×

Topological invariants of groups and Koszul modules. (English) Zbl 1514.57028

Let \(G\supseteq G' \supseteq G''\) denote the first terms of the derived series of a finitely-generated group \(G\). The Alexander module of \(G\) is the commutator subgroup \(G'/G''\) of \(G/G''\), a module over the group ring of \(G/G'=H_1(G)\). Following an observation of W. Massey, the Hilbert series of this module relative to its filtration by powers of the augmentation ideal determines the ranks \(\theta_q(G)\), \(q \geq 0\), of the factors in the lower central series of \(G/G''\), called the Chen ranks of \(G\).
In this context the authors introduced a graded module \(W(V,K)\), the Koszul module, associated to a \(n\)-dimensional complex vector space \(V\) and a subspace \(K\) of \(\bigwedge^2(V)\), in earlier work on Green’s conjecture about syzygies of algebraic curves [M. Aprodu et al., Invent. Math. 218, No. 3, 657–720 (2019; Zbl 1430.14074)]. For the application to Chen ranks, one takes \(V=H_1(G,{\mathbb C})\) and \(K\) to be the image of the dual of the cup product map \(\bigwedge^2(V^\vee) \to H^2(G,{\mathbb C})\). Then \(\theta_q(G) \leq \dim W_q(V,K)\) with equality if and only if \(G\) is a 1-formal group.
Using this approach, in the present paper the authors prove precise vanishing results and upper bounds for \(\theta_q(G)\) under the assumption that \(\theta_q(G)=0\) for \(q\gg 1\), that is, the lower central series factors of \(G/G''\) are finite abelian groups for \(q\) sufficiently large. This is equivalent to nonexistence of nonzero decomposable elements in \(K^\vee \subseteq \bigwedge^2(V^\vee)\), connecting the Koszul module to the resonance variety of \(G\). This condition is shown to be equivalent to the vanishing of \(W_{n-3}(V,K)\), where \(n=\dim(V)\), resulting in upper bounds on \(\theta_q(G)\) for \(1\leq q \leq n-4\) in terms of the rank of \(H_1(G)\), which become equalities for 1-formal groups. These results are then applied to determine growth rates and bounds on nilpotence classes of Alexander modules in several families of groups, including fundamental groups of certain compact Kähler manifolds and Torelli groups of mapping class groups and free groups.

MSC:

57M07 Topological methods in group theory
57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
20F28 Automorphism groups of groups
20F18 Nilpotent groups
32J27 Compact Kähler manifolds: generalizations, classification
14H10 Families, moduli of curves (algebraic)

Citations:

Zbl 1430.14074

References:

[1] J. W. ALEXANDER, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), no. 2, 275-306. · JFM 54.0603.03 · doi:10.2307/1989123
[2] S. ANDREADAKIS, On the automorphisms of free groups and free nilpotent groups, Proc. Lond. Math. Soc. (3) 15 (1965), 239-268. · Zbl 0135.04502 · doi:10.1112/plms/s3-15.1.239
[3] M. APRODU, G. FARKAS, Ş. PAPADIMA, C. RAICU, and J. WEYMAN, Koszul modules and Green’s conjecture, Invent. Math. 218 (2019), no. 3, 657-720. · Zbl 1430.14074 · doi:10.1007/s00222-019-00894-1
[4] S. BACHMUTH, Induced automorphisms of free groups and free metabelian groups, Trans. Amer. Math. Soc. 122 (1966), 1-17. · Zbl 0133.28101 · doi:10.2307/1994498
[5] H. BASS, The degree of polynomial growth of finitely generated nilpotent groups, Proc. Lond. Math. Soc. (3) 25 (1972), 603-614. · Zbl 0259.20045 · doi:10.1112/plms/s3-25.4.603
[6] A. BEAUVILLE, “Annulation du \[{H^1}\] pour les fibrés en droites plats” in Complex Algebraic Varieties (Bayreuth 1990), Springer, Berlin, 1992, 1-15. · Zbl 0792.14006 · doi:10.1007/BFb0094507
[7] F. CAMPANA, Remarques sur les groupes de Kähler nilpotents, Ann. Sci. Ecole Norm. Sup. (4) 28 (1995), no. 3, 307-316. · Zbl 0829.32006
[8] J. CARLSON and D. TOLEDO, Quadratic presentations and nilpotent Kähler groups, J. Geom. Anal. 5 (1995), no. 3, 359-377. · Zbl 0835.57014 · doi:10.1007/BF02921801
[9] F. CATANESE, Moduli and classification of irregular Kähler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991), no. 2, 263-289. · Zbl 0743.32025 · doi:10.1007/BF01245076
[10] M. CHAN, M. MELO, and F. VIVIANI, “Tropical Teichmüller and Siegel spaces” in Algebraic and Combinatorial Aspects of Tropical Geometry, Amer. Math. Soc., Providence, 2013, 45-85. · Zbl 1290.14037 · doi:10.1090/conm/589/11742
[11] K.-T. CHEN, Integration in free groups, Ann. of Math. (2) 54 (1951), 147-162. · Zbl 0045.30102 · doi:10.2307/1969316
[12] T. CHURCH, M. ERSHOV, and A. PUTMAN, On finite generation of the Johnson filtrations, to appear in J. Eur. Math. Soc., preprint, arXiv:1711.04779 [math.GR]. · Zbl 07523092
[13] C. CILIBERTO, M. MENDES LOPES, and X. ROULLEAU, On Schoen surfaces, Comment. Math. Helv. 90 (2015), no. 1, 59-74. · Zbl 1315.14053 · doi:10.4171/CMH/346
[14] D. C. COHEN and H. K. SCHENK, Chen ranks and resonance, Adv. Math. 285 (2015), 1-27. · Zbl 1360.20021 · doi:10.1016/j.aim.2015.07.023
[15] D. C. COHEN and A. I. SUCIU, “The Chen groups of the pure braid group” in The C˘ech Centennial, Amer. Math. Soc., Providence, 1995, 45-64. · Zbl 0833.20047 · doi:10.1090/conm/181/02029
[16] M. CULLER and K. VOGTMANN, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91-119. · Zbl 0589.20022 · doi:10.1007/BF01388734
[17] T. DELZANT, L’invariant de Bieri-Neumann-Strebel des groupes fondamentaux des variétés kähleriennes, Math. Ann. 348 (2010), no. 1, 119-125. · Zbl 1293.32030 · doi:10.1007/s00208-009-0468-8
[18] A. DIMCA, R. HAIN, and Ş. PAPADIMA, The abelianization of the Johnson kernel, J. Eur. Math. Soc. 16 (2014), no. 4, 805-822. · Zbl 1344.57001 · doi:10.4171/JEMS/447
[19] A. DIMCA and Ş. PAPADIMA, Arithmetic group symmetry and finiteness properties of Torelli groups, Ann. of Math. 177 (2013), no. 2, 395-423. · Zbl 1271.57053 · doi:10.4007/annals.2013.177.2.1
[20] A. DIMCA, Ş. PAPADIMA, and A. SUCIU, Topology and geometry of cohomology jump loci, Duke Math. J. 148 (2009), no. 3, 405-457. · Zbl 1222.14035 · doi:10.1215/00127094-2009-030
[21] D. EISENBUD, “Green’s conjecture: An orientation for algebraists” in Free Resolutions in Commutative Algebra and Algebraic Geometry (Sundance 1990), Jones and Bartlett, Boston, 1992, 51-78. · Zbl 0792.14015
[22] M. ERSHOV and S. HE, On finiteness properties of the Johnson filtrations, Duke Math. J. 167 (2018), no. 9, 1713-1759. · Zbl 1498.20082 · doi:10.1215/00127094-2018-0005
[23] M. GREEN and R. LAZARSFELD, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389-407. · Zbl 0659.14007 · doi:10.1007/BF01388711
[24] M. GREEN and R. LAZARSFELD, Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991), 87-103. · Zbl 0735.14004 · doi:10.2307/2939255
[25] M. GROMOV, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), no. 53, 53-73. · Zbl 0474.20018
[26] Y. GUIVARC’H, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333-379. · Zbl 0294.43003
[27] R. HAIN, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), no. 3, 597-651. · Zbl 0915.57001 · doi:10.1090/S0894-0347-97-00235-X
[28] R. HAIN, Genus 3 mapping class groups are not Kähler, J. Topol. 8 (2014), no. 1, 213-246. · Zbl 1318.14028 · doi:10.1112/jtopol/jtu020
[29] R. HARTSHORNE, Algebraic Geometry, New York, Springer, 1977. · Zbl 0367.14001
[30] D. JOHNSON, The structure of the Torelli group, I: A finite set of generators for \[ \mathcal{I} \], Ann. of Math. 118 (1983), no. 3, 423-442. · Zbl 0549.57006 · doi:10.2307/2006977
[31] D. JOHNSON, The structure of the Torelli group, II: A characterization of the group generated by twists on bounding curves, Topology 24 (1985), no. 2, 113-126. · Zbl 0571.57009 · doi:10.1016/0040-9383(85)90049-7
[32] N. KAWAZUMI, Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497 [math.GT].
[33] A. LIBGOBER, First order deformations for rank one local systems with a non-vanishing cohomology, Topology Appl. 118 (2002), 159-168. · Zbl 1010.52016 · doi:10.1016/S0166-8641(01)00048-7
[34] A. D. MĂCINIC, Cohomology rings and formality properties of nilpotent groups, J. Pure Appl. Algebra 214 (2010), no. 10, 1818-1826. · Zbl 1238.20052 · doi:10.1016/j.jpaa.2009.12.025
[35] A. D. MĂCINIC and Ş. PAPADIMA, “Characteristic varieties of nilpotent groups and applications” in Proceedings of the Sixth Congress of Romanian Mathematicians, Vol. 1, Ed. Acad. Române, Bucharest, 2009, 57-64. · Zbl 1212.20066
[36] W. MAGNUS, Über n-dimensionale Gittertransformationen, Acta Math. 64 (1935), no. 1, 353-367. · Zbl 0012.05405 · doi:10.1007/BF02545673
[37] A. MANN, Growth conditions in infinitely generated groups, Groups Geom. Dyn. 1 (2007), no. 4, 613-622. · Zbl 1185.20047 · doi:10.4171/GGD/26
[38] M. MARKL and Ş. PAPADIMA, Homotopy Lie algebras and fundamental groups via deformation theory, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 905-935. · Zbl 0760.55010
[39] W. MASSEY, Completion of link modules, Duke Math. J. 47 (1980), no. 2, 399-420. · Zbl 0464.57001
[40] J. MCCARTHY, A Tits alternative for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985), no. 2, 583-612. · Zbl 0579.57006 · doi:10.2307/2000100
[41] Ş. PAPADIMA and A. SUCIU, Chen Lie algebras, Int. Math. Res. Not. 21 (2004), no. 21, 1057-1086. · Zbl 1076.17007 · doi:10.1155/S1073792804132017
[42] Ş. PAPADIMA and A. SUCIU, Geometric and algebraic aspects of 1-formality, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 52 (2009), no. 3, 355-375. · Zbl 1199.55010
[43] Ş. PAPADIMA and A. SUCIU, Homological finiteness in the Johnson filtration of the automorphism group of a free group, J. Topol. 5 (2012), 909-944. · Zbl 1268.20037 · doi:10.1112/jtopol/jts023
[44] Ş. PAPADIMA and A. SUCIU, Vanishing resonance and representations of Lie algebras, J. Reine Angew. Math. 706 (2015), 83-101. · Zbl 1372.17013 · doi:10.1515/crelle-2013-0073
[45] H. SCHENCK, and A. SUCIU, Resonance, linear syzygies, Chen groups , and the Bernstein-Gel’fand-Gel’fand correspondence, Trans. Amer. Math. Soc. 358 (2005), 2269-2289. · Zbl 1153.52008 · doi:10.1090/S0002-9947-05-03853-5
[46] C. SCHOEN, A family of surfaces constructed from genus 2 curves, Int. J. Math. 18 (2007), no. 5, 585-612. · Zbl 1118.14042 · doi:10.1142/S0129167X07004175
[47] D. SEGAL, Polycyclic groups, Cambridge Univ. Press, Cambridge, 1983. · Zbl 0516.20001 · doi:10.1017/CBO9780511565953
[48] D. SULLIVAN, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 269-331. · Zbl 0374.57002
[49] C. VOISIN, Green’s generic syzygy conjecture for curves of even genus lying on a \[K3 surface \], J. Eur. Math. Soc. 4 (2002), no. 4, 363-404. · Zbl 1080.14525 · doi:10.1007/s100970200042
[50] C. VOISIN, Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005), no. 5, 1163-1190. · Zbl 1083.14038 · doi:10.1112/S0010437X05001387
[51] J. WEYMAN, Cohomology of Vector Bundles and Syzygies, Cambridge Univ. Press, Cambridge, 2003. · Zbl 1075.13007 · doi:10.1017/CBO9780511546556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.