×

Resolutions of ideals of subspace arrangements. (English) Zbl 1514.13011

Summary: Given a collection of \(t\) subspaces in an \(n\)-dimensional vector space \(W\) we can associate to them \(t\) linear ideals in the symmetric algebra \(\mathcal{S}(W^*)\). A. Conca and J. Herzog [Collect. Math. 54, No. 2, 137–152 (2003; Zbl 1074.13004)] showed that the Castelnuovo-Mumford regularity of the product of \(t\) linear ideals is equal to \(t\). H. Derksen and J. Sidman [Adv. Math. 172, No. 2, 151–157 (2002; Zbl 1040.13009)] showed that the Castelnuovo-Mumford regularity of the intersection of \(t\) linear ideals is at most \(t\). We show that analogous results hold when we work over the exterior algebra \(\bigwedge (W^*)\) (over a field of characteristic 0). To prove these results we rely on the functoriality of equivariant free resolutions and construct a functor \(\Omega\) from the category of polynomial functors to itself. The functor \(\Omega\) transforms resolutions of polynomial functors associated to subspace arrangements over the symmetric algebra to resolutions over the exterior algebra.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
13P20 Computational homological algebra
16E05 Syzygies, resolutions, complexes in associative algebras
20C32 Representations of infinite symmetric groups
14N20 Configurations and arrangements of linear subspaces

References:

[1] A. Aramova, J. Herzog, and T. Hibi, “Gotzmann theorems for exterior algebras and combinatorics”, J. Algebra 191:1 (1997), 174-211. · Zbl 0897.13030 · doi:10.1006/jabr.1996.6903
[2] A. Aramova, L. L. Avramov, and J. Herzog, “Resolutions of monomial ideals and cohomology over exterior algebras”, Trans. Amer. Math. Soc. 352:2 (2000), 579-594. · Zbl 0930.13011 · doi:10.1090/S0002-9947-99-02298-9
[3] A. Björner, “Subspace arrangements”, pp. 321-370 in First European Congress of Mathematics (Paris, 1992), vol. I, Progr. Math. 119, Birkhäuser, Basel, 1994. · Zbl 0844.52008
[4] A. Conca and J. Herzog, “Castelnuovo-Mumford regularity of products of ideals”, Collect. Math. 54:2 (2003), 137-152. · Zbl 1074.13004
[5] H. Derksen, “Computation of invariants for reductive groups”, Adv. Math. 141:2 (1999), 366-384. · Zbl 0927.13007 · doi:10.1006/aima.1998.1787
[6] H. Derksen, “Symmetric and quasi-symmetric functions associated to polymatroids”, J. Algebraic Combin. 30:1 (2009), 43-86. · Zbl 1231.05276 · doi:10.1007/s10801-008-0151-2
[7] H. Derksen and J. Sidman, “A sharp bound for the Castelnuovo-Mumford regularity of subspace arrangements”, Adv. Math. 172:2 (2002), 151-157. · Zbl 1040.13009 · doi:10.1016/S0001-8708(02)00019-1
[8] H. Derksen and J. Sidman, “Castelnuovo-Mumford regularity by approximation”, Adv. Math. 188:1 (2004), 104-123. · Zbl 1062.13003 · doi:10.1016/j.aim.2003.10.001
[9] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer, 1995. · Zbl 0819.13001 · doi:10.1007/978-1-4612-5350-1
[10] D. Eisenbud and S. Goto, “Linear free resolutions and minimal multiplicity”, J. Algebra 88:1 (1984), 89-133. · Zbl 0531.13015 · doi:10.1016/0021-8693(84)90092-9
[11] D. Eisenbud, S. Popescu, and S. Yuzvinsky, “Hyperplane arrangement cohomology and monomials in the exterior algebra”, Trans. Amer. Math. Soc. 355:11 (2003), 4365-4383. · Zbl 1034.52019 · doi:10.1090/S0002-9947-03-03292-6
[12] F. Gandini, Ideals of subspace arrangements, Ph.D. thesis, University of Michigan, 2019, https://www.proquest.com/docview/2352654381.
[13] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995. · Zbl 0824.05059
[14] J. McCullough and I. Peeva, “Counterexamples to the Eisenbud-Goto regularity conjecture”, J. Amer. Math. Soc. 31:2 (2018), 473-496. · Zbl 1390.13043 · doi:10.1090/jams/891
[15] E. Noether, “Der Endlichkeitssatz der Invarianten endlicher Gruppen”, Math. Ann. 77:1 (1915), 89-92. · JFM 45.0198.01 · doi:10.1007/BF01456821
[16] T. Römer, “Generalized Alexander duality and applications”, Osaka J. Math. 38:2 (2001), 469-485. · Zbl 0995.13008
[17] S. V. Sam and A. Snowden, “Introduction to twisted commutative algebras”, 2012.
[18] S. V. Sam and A. Snowden, “GL-equivariant modules over polynomial rings in infinitely many variables”, Trans. Amer. Math. Soc. 368:2 (2016), 1097-1158. · Zbl 1436.13012 · doi:10.1090/tran/6355
[19] S. V. Sam and A. Snowden, “GL-equivariant modules over polynomial rings in infinitely many variables, II”, Forum Math. Sigma 7 (2019), art. id. e5. · Zbl 1441.16008 · doi:10.1017/fms.2018.27
[20] H. Schenck and J. Sidman, “Commutative algebra of subspace and hyperplane arrangements”, pp. 639-665 in Commutative algebra, Springer, 2013. · Zbl 1263.13012 · doi:10.1007/978-1-4614-5292-8_21
[21] A. Snowden, “A remark on a conjecture of Derksen”, J. Commut. Algebra 6:1 (2014), 109-112 · Zbl 1291.13013 · doi:10.1216/JCA-2014-6-1-109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.