×

Brake orbits for Hamiltonian systems of the classical type via geodesics in singular Finsler metrics. (English) Zbl 1513.70068

Summary: We consider Hamiltonian functions of the classical type, namely, even and convex with respect to the generalized momenta. A brake orbit is a periodic solution of Hamilton’s equations such that the generalized momenta are zero on two different points. Under mild assumptions, this paper reduces the multiplicity problem of the brake orbits for a Hamiltonian function of the classical type to the multiplicity problem of orthogonal geodesic chords in a concave Finslerian manifold with boundary. This paper will be used for a generalization of a Seifert’s conjecture about the multiplicity of brake orbits to Hamiltonian functions of the classical type.

MSC:

70H12 Periodic and almost periodic solutions for problems in Hamiltonian and Lagrangian mechanics
70G75 Variational methods for problems in mechanics
70H05 Hamilton’s equations
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)

References:

[1] H. Seifert, Periodische bewegungen mechanischer systeme, Math. Z. 51 (1948), 197-216. · Zbl 0030.22103
[2] A. Ambrosetti, V. Benci, and Y. Long, A note on the existence of multiple brake orbits, Nonlinear Anal. 21 (1993), no. 9, 643-649. · Zbl 0811.70015
[3] X. Hu, L. Wu, and R. Yang, Morse index theorem of Lagrangian systems and stability of brake orbit, J. Dynam. Differ. Equ. 32 (2020), no. 1, 61-84. · Zbl 1437.37071
[4] C. Liu, Y. Long, and D. Zhang, Index iteration theory for brake orbit type solutions and applications, Anal. Theory Appl. 37 (2021), no. 2, 129-156. · Zbl 1488.37044
[5] C. Liu and D. Zhang, Seifert conjecture in the even convex case, Comm. Pure Appl. Math. 67 (2014), 1563-1604. · Zbl 1336.37043
[6] Y. Long, D. Zhang, and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math. 203 (2006), no. 2, 568-635. · Zbl 1118.58006
[7] P. H. Rabinowitz, Critical point theory and applications to differential equations: a survey, In: M. Matzeu and A. Vignoli, editors, Topological Nonlinear Analysis, volume 15, chapter Critical Point Theory and Applications to Differential Equations: A Survey, Birkhäuser Boston, Boston, 1995, pp. 464-513. · Zbl 0823.58009
[8] A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann. 283 (1989), no. 2, 241-255. · Zbl 0642.58030
[9] F. Wang and D. Zhang, Multiple brake orbits of even Hamiltonian systems on torus, Sci. China Math. 63 (2020), no. 7, 1429-1440. · Zbl 1448.58010
[10] D. Zhang and C. Liu, Multiple brake orbits on compact convex symmetric reversible hypersurfaces in R2n, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 3, 531-554. · Zbl 1300.52006
[11] R. Giambò, F. Giannoni, P. Piccione, Multiple orthogonal geodesic chords and a proof of Seifert’s conjecture on brake orbits, 2021, http://arxiv.org/abs/2002.09687v2.
[12] R. Giambò, F. Giannoni, and P. Piccione, On the multiplicity of orthogonal geodesies in riemannian manifold with concave boundary. Applications to brake orbits and homoclinics, Adv. Nonlinear Stud. 9 (2009), no. 4, 763-782. · Zbl 1213.37032
[13] R. Giambò, F. Giannoni, and P. Piccione, Existence of orthogonal geodesic chords on Riemannian manifolds with concave boundary and homeomorphic to the N-dimensional disk, Nonlinear Anal. 72 (2010), no. 2, 290-337. · Zbl 1193.37027
[14] R. Giambò, F. Giannoni, and P. Piccione, Multiple brake orbits in m-dimensional disks, Calc. Var. Partial Differ. Equ. 54 (2015), 2553-2580. · Zbl 1343.37051
[15] R. Giambò, F. Giannoni, and P. Piccione, On the normal exponential map in singular conformal metrics, Nonlinear Anal. 127 (2015), 35-44. · Zbl 1329.53049
[16] R. Giambò, F. Giannoni, and P. Piccione, Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles, Calc. Var. Partial Differ. Equ. 57 (2018), no. 117. · Zbl 1401.37039
[17] R. Giambò, F. Giannoni, and P. Piccione, Orthogonal geodesic chords, brake orbits and homoclinic orbits in riemannian manifolds, Adv. Differ. Equ. 10 (2004), 1-24.
[18] O. R. Ruiz, Existence of brake orbits in Finsler mechanical systems, In: J. Palis and M. doCarmo, editors, Geometry and Topology, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1977, pp. 542-567. · Zbl 0357.70019
[19] A. Weinstein, Periodic orbits for convex hamiltonian systems, Ann. of Math. 108 (1978), no. 3, 507-518. · Zbl 0403.58001
[20] H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959. · Zbl 0087.36604
[21] Z. Shen, Lectures on Finsler Geometry, World Scientific Publishing, Singapore, 2001. · Zbl 0974.53002
[22] R. Bartolo, E. Caponio, A. V. Germinario, and M. Sánchez, Convex domains of Finsler and Riemannian manifolds, Calculus Variat. 40 (2011), 335-356. · Zbl 1216.53064
[23] D. Corona, A multiplicity result for Euler-Lagrange orbits satisfying the conormal boundary conditions, J. Fixed Point Theory Appl. 22 (2020), no. 60. · Zbl 1473.70031
[24] D. Corona, A multiplicity result for orthogonal geodesic chords in Finsler disks, Discrete Contin. Dyn. Syst. 41 (2021), no. 11, 5329-5357. · Zbl 1498.70024
[25] D. Corona and F. Giannoni, A new approach for Euler-Lagrange orbits on compact manifolds with boundary, Symmetry 12 (2020), no. 11, 1917.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.