×

The computational complexity of understanding binary classifier decisions. (English) Zbl 1512.68116

Summary: For a \(d\)-ary Boolean function \(\boldsymbol{\Phi} : \{0, 1\}^d \rightarrow \{0, 1\}\) and an assignment to its variables \(\mathbf{x} = (x_1, x_2 \ldots, x_d)\) we consider the problem of finding those subsets of the variables that are sufficient to determine the function value with a given probability \(\delta\). This is motivated by the task of interpreting predictions of binary classifiers described as Boolean circuits, which can be seen as special cases of neural networks. We show that the problem of deciding whether such subsets of relevant variables of limited size \(k \leq d\) exist is complete for the complexity class \(\mathsf{NP}^{\mathsf{PP}}\) and thus, generally, unfeasible to solve. We then introduce a variant, in which it suffices to check whether a subset determines the function value with probability at least \(\delta\) or at most \(\delta - \gamma\) for \(0 < \gamma < \delta \). This promise of a probability gap reduces the complexity to the class \(\mathsf{NP}^{\mathsf{BPP}}\). Finally, we show that finding the minimal set of relevant variables cannot be reasonably approximated, i.e. with an approximation factor \(d^{1- \alpha}\) for \(\alpha > 0\), by a polynomial time algorithm unless \(\mathsf{P}=\mathsf{NP}\). This holds even with the promise of a probability gap.

MSC:

68Q25 Analysis of algorithms and problem complexity
68Q06 Networks and circuits as models of computation; circuit complexity
68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)
68T05 Learning and adaptive systems in artificial intelligence
68W25 Approximation algorithms

References:

[1] Akers, S. B. (1978). Binary decision diagrams.IEEE Transactions on computers,C-27(6), 509-516. · Zbl 0377.94038
[2] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.PLOS ONE,10(7), 1-46.
[3] Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. (2017). Adversarial patch.CoRR, abs/1712.09665.
[4] Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation.Computers, IEEE Transactions on,100(8), 677-691. · Zbl 0593.94022
[5] Coudert, O., & Madre, J. C. (1992). Implicit and incremental computation of primes and essential primes of boolean functions.. InDAC, Vol. 92, pp. 36-39.
[6] Darwiche, A. (2000). On the tractable counting of theory models and its application to belief revision and truth maintenance.CoRR,cs.AI/0003044. · Zbl 1033.03505
[7] Darwiche, A. (2011). Sdd: A new canonical representation of propositional knowledge bases. InTwenty-Second International Joint Conference on Artificial Intelligence.
[8] de Campos, C. P., & Ji, Q. (2008). Strategy selection in influence diagrams using imprecise probabilities. InProceedings of the Twenty-Fourth Conference on Uncertainty in
[9] Deng, X., & Papadimitriou, C. H. (1994). On the complexity of cooperative solution concepts. Mathematics of Operations Research,19(2), 257-266. · Zbl 0824.90146
[10] Drummond, M., & Bresina, J. (1990).Anytime synthetic projection: Maximizing the probability of goal satisfaction. NASA, Ames Research Center, Artificial Intelligence Research
[11] Eiter, T., & Gottlob, G. (1995). The complexity of logic-based abduction.Journal of the ACM (JACM),42(1), 3-42. · Zbl 0886.68121
[12] Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. Tech. rep. 1341, University of Montreal. Also presented at the ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.
[13] Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2008). A linear approximation method for the shapley value.Artificial Intelligence,172(14), 1673-1699. · Zbl 1184.91029
[14] Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation. InProceedings of the IEEE International Conference on Computer Vision, pp. 3429-3437.
[15] Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.Biological cybernetics,36(4), · Zbl 0419.92009
[16] Goodfellow, I., Bengio, Y., & Courville, A. (2016).Deep Learning. MIT Press.http: //www.deeplearningbook.org. · Zbl 1373.68009
[17] Graves, A., Mohamed, A.-R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In2013 IEEE International Conference on Acoustics, Speech and
[18] Grötschel, M., Lovász, L., & Schrijver, A. (1988).Geometric Algorithms and Combinatorial Optimization, Vol. 2 ofAlgorithms and Combinatorics. Springer. · Zbl 0634.05001
[19] Hoeffding, W. (1994). Probability inequalities for sums of bounded random variables. In The Collected Works of Wassily Hoeffding, pp. 409-426. Springer. · Zbl 0807.01034
[20] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.Neural networks,4(2), 251-257.
[21] Ignatiev, A., Narodytska, N., & Marques-Silva, J. (2019). Abduction-based explanations for machine learning models. InProceedings of the AAAI Conference on Artificial · Zbl 1441.68211
[22] Kang, E., Min, J., & Ye, J. C. (2017). A deep convolutional neural network using directional wavelets for low-dose x-ray ct reconstruction.Medical Physics,44(10), e360-e375.
[23] Khosravi, P., Liang, Y., Choi, Y., & Van den Broeck, G. (2019). What to expect of classifiers? reasoning about logistic regression with missing features. InProceedings of
[24] Kononenko, I., et al. (2010). An efficient explanation of individual classifications using game theory.Journal of Machine Learning Research,11(Jan), 1-18. · Zbl 1242.68250
[25] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., & Weinberger, K. Q. (Eds.),Advances in Neural Information Processing Systems 25, pp. 1097-1105. Curran Associates, Inc.
[26] Littman, M. L., Goldsmith, J., & Mundhenk, M. (1998). The computational complexity of probabilistic planning.Journal of Artificial Intelligence Research,9, 1-36. · Zbl 0903.68100
[27] Littman, M. L., Majercik, S. M., & Pitassi, T. (2001). Stochastic boolean satisfiability. Journal of Automated Reasoning,27(3), 251-296. · Zbl 0988.68189
[28] Liu, X., Yang, H., Song, L., Li, H., & Chen, Y. (2018). Dpatch: Attacking object detectors with adversarial patches.CoRR,abs/1806.02299.
[29] Lyu, B., & Haque, A. (2018). Deep learning based tumor type classification using gene expression data. InProceedings of the 2018 ACM International Conference on Bioinformatics,
[30] Macdonald, J., Wäldchen, S., Hauch, S., & Kutyniok, G. (2019). A rate-distortion framework for explaining neural network decisions.CoRR,abs/1905.11092. · Zbl 1512.68116
[31] Manquinho, V. M., Oliveira, A. L., & Marques-Silva, J. (1998). Models and algorithms for computing minimum-size prime implicants. InProceedings of the International
[32] Marquis, P. (1991). Extending abduction from propositional to first-order logic. InInternational Workshop on Fundamentals of Artificial Intelligence Research, pp. 141-155. · Zbl 0793.03007
[33] Marquis, P. (2000). Consequence finding algorithms. In Kohlas, J., & Moral, S. (Eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems: Algorithms · Zbl 1015.68197
[34] McBee, M. P., Awan, O. A., Colucci, A. T., Ghobadi, C. W., Kadom, N., Kansagra, A. P., Tridandapani, S., & Auffermann, W. F. (2018). Deep learning in radiology.Academic Radiology,25(11), 1472-1480.
[35] Mukherjee, A., & Basu, A. (2017). Lower bounds over boolean inputs for deep neural networks with relu gates.CoRR,abs/1711.03073.
[36] Nielsen, M. A. (2018). Neural networks and deep learning.. · Zbl 1402.68001
[37] Parberry, I. (1996).Circuit complexity and feedforward neural networks. Hillsdale, NJ: Lawrence Erlbaum. · Zbl 0864.68082
[38] Park, J. D. (2002). Map complexity results and approximation methods. InProceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pp. 388-396. Morgan
[39] Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic explanations. InThirty-Second AAAI Conference on Artificial Intelligence.
[40] Samek, W., Binder, A., Montavon, G., Lapuschkin, S., & Müller, K.-R. (2017a). Evaluating the visualization of what a deep neural network has learned.IEEE Transactions on
[41] Samek, W., Wiegand, T., & Müller, K. (2017b). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models.CoRR,abs/1708.08296.
[42] Shapley, L. S. (1953). A value for n-person games. In Kuhn, H. W., & Tucker, A. W. (Eds.), Contributions to the Theory of Games II, pp. 307-317. Princeton University Press, · Zbl 0050.14404
[43] Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis.Annual Review of Biomedical Engineering,19(1), 221-248.
[44] Shih, A., Choi, A., & Darwiche, A. (2018). A symbolic approach to explaining bayesian network classifiers. InProceedings of the 27th International Joint Conference on
[45] Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional networks: Visualising image classification models and saliency maps. In Bengio, Y., & LeCun, Y.
[46] Sun, Y., Wang, X., & Tang, X. (2013). Deep convolutional network cascade for facial point detection. InProceedings of the IEEE conference on computer vision and pattern
[47] Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., & Weinberger, K. Q.
[48] Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. InProceedings of the IEEE conference on
[49] Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation via deep neural networks. InProceedings of the IEEE conference on computer vision and pattern recognition, pp.
[50] Vidovic, M. M.-C., Görnitz, N., Müller, K.-R., Rätsch, G., & Kloft, M. (2015). Opening the black box: Revealing interpretable sequence motifs in kernel-based learning algorithms. InJoint European Conference on Machine Learning and Knowledge Discovery in
[51] Xie, J., Xu, L., & Chen, E. (2012). Image denoising and inpainting with deep neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., & Weinberger, K. Q. (Eds.),Advances in
[52] Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Fleet, D., Pajdla, T., Schiele, B., & Tuytelaars, T. (Eds
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.