×

Generating a robust baseline schedule for the robust discrete time/resource trade-off problem under work content uncertainty. (English) Zbl 1511.90219

Summary: As a subproblem of the multi-mode resource-constrained project scheduling problem, the discrete time/resource trade-off problem (DTRTP) has occurred widely in practice. This paper tries to generate a robust schedule for the DTRTP with a given due date under uncertainty of the work content. Nine free slack-based measures are adopted as surrogate measures of solution robustness, and a two-stage algorithm based on differential evolution (DE) and the time buffering approach are proposed to deal with the robust model based on the proposed nine different surrogate measures. The computational results show that the three robust models based on a free slack utility function have been proven to be more effective and could generate more robust baseline schedules in most projects with excellent performance, i.e. a low stability cost, a low average project length and a high timely project completion probability.

MSC:

90B35 Deterministic scheduling theory in operations research
Full Text: DOI

References:

[1] Al-Fawzan, M. A.; Haouari, M., A bi-objective model for robust resource-constrained project scheduling, Int. J. Prod. Econ., 96, 2, 175-187 (2005)
[2] Ali, M. M., Differential Evolution with generalized differentials, J. Comput. Appl. Math., 235, 8, 2205-2216 (2011) · Zbl 1209.65055
[3] Aramesh, S.; Mousavi, S. M.; Mohagheghi, V.; Zavadskas, E. K.; Antucheviciene, J., A soft computing approach based on critical chain for project planning and control in real-world applications with interval data, Appl. Soft Comput., 98, Article 106915 pp. (2021)
[4] Artigues, C.; Michelon, P.; Reusser, S., Insertion techniques for static and dynamic resource-constrained project scheduling, Eur. J. Oper. Res., 149, 2, 249-267 (2003) · Zbl 1040.90013
[5] Ashtiani, B., Jalali, G.R., Aryanezhad, M.B., Makuti, A., 2007, December. A new approach for buffer sizing in critical chain scheduling. Conference paper presented at the 2007 IEEE International Conference on Industrial Engineering and Engineering Management, 1037-1041, Singapore.
[6] Babu, B.; Sastry, K., Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation, Comput. Chem. Eng., 23, 3, 327-339 (1999)
[7] Bie, L.; Cui, N.; Zhang, X., Buffer sizing approach with dependence assumption between activities in critical chain scheduling, Int. J. Prod. Res., 50, 24, 1-14 (2012)
[8] Cai, Y. Q.; Wang, J. H., Differential evolution with neighborhood and direction information for numerical optimization, IEEE Trans. Cybern., 43, 6, 2202-2215 (2013)
[9] Chtourou, H.; Haouari, M., A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling, Comput. Ind. Eng., 55, 1, 183-194 (2008)
[10] Chang, T.; Chang, H., An efficient approach for reducing harmonic voltage distortion in distribution systems with active power line conditioners, IEEE Trans. Power Delivery, 15, 3, 990-995 (2000)
[11] Chiou, J. P.; Chang, C. F.; Su, C. T., Ant direction hybrid differential evolution for solving large capacitor placement problems, IEEE Trans. Power Syst., 19, 4, 1794-1800 (2004)
[12] Damak, N.; Jarboui, B.; Siarry, P.; Loukil, T., Differential evolution for solving multi-mode resource-constrained project scheduling problem, Comput. Operation Res., 36, 2653-2659 (2009) · Zbl 1179.90134
[13] De Reyck, B.; Demeulemeester, E.; Herroelen, W., Local search methods for the discrete time/resource trade-off problem in project networks, Naval Res. Logistics Q., 45, 6, 553-578 (1998) · Zbl 0948.90065
[14] Demeulemeester, E.; De Reyck, B.; Herroelen, W., The discrete time/resource trade-off problem in project networks: A branch and bound approach, IIE Trans., 32, 11, 1059-1069 (2000)
[15] Demeulemeester, E., Herroelen, W., 2011. Robust Project Scheduling. Foundations and Trends® in Technology, Information and Operations Management, 3(3-4), 201-376.
[16] Deblaere, F.; Demeulemeester, E.; Herroelen, W., Reactive scheduling in the multi-mode RCPSP, Comput. Oper. Res., 38, 1, 63-74 (2011) · Zbl 1231.90184
[17] Deblaere, F.; Demeulemeester, E.; Herroelen, W.; Van de Vonder, S., Robust resource allocation decisions in resource-constrained projects, Decision Sci., 38, 1, 5-37 (2007)
[18] Epitropakis, M. G.; Tasoulis, D. K.; Pavlidis, N. G.; Plagianakos, V. P.; Vrahatis, M. N., Enhancing differential evolution utilizing proximity-based mutation operators, IEEE Trans. Evol. Comput., 15, 1, 99-119 (2011)
[19] Goldratt, E. M., Critical Chain (1997), The North River Press: The North River Press New York
[20] Gong, W. Y.; Cai, Z. H.; Lang, Y., Engineering optimization by means of an improved constrained differential evolution, Comput. Methods Appl. Mech. Eng., 268, 716-727 (2014)
[21] Herroelen, W.; Leus, R., Stability and resource allocation in project planning, IIE Trans., 36, 7, 667-682 (2004)
[22] Hazır, Ö.; Haouari, M.; Erel, E., Robust scheduling and robustness measures for the discrete time/cost trade-off problem, Eur. J. Oper. Res., 207, 2, 633-643 (2010) · Zbl 1205.90124
[23] Herroelen, W.; Leus, R., Project scheduling under uncertainty: Survey and research potentials, Eur. J. Oper. Res., 165, 2, 289-306 (2005) · Zbl 1066.90050
[24] Hurley, S.F., 1996. Letter: OR based scheduling information an issue of quality in research. Production planning and Control: The management of Operations, 7(3), 339.
[25] Islam, S. M.; Das, S.; Ghosh, S.; Roy, S.; Suganthan, P. N., An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization, IEEE Trans. Syst., Man, Cybern. B, 42, 2, 482-500 (2012)
[26] Jovanović, P.; Kecman, P.; Bojović, N.; Mandić, D., Optimal allocation of buffer times to increase train schedule robustness, Eur. J. Oper. Res., 256, 1, 44-54 (2017) · Zbl 1394.90281
[27] Jouni, L.; Ivan, Z., Mechanical engineering design optimization by differential evolution, (Corne, D.; Dorigo, M.; Glover, F., New ideas in optimization (1999), McGraw-Hill: McGraw-Hill London, UK), 117-146
[28] Kobylański, P.; Kuchta, D., A note on the paper by M. A. Al-Fawzan and M. Haouari about a bi-objective problem for robust resource-constrained project scheduling, Int. J. Prod. Econ., 107, 2, 496-501 (2007)
[29] Khemakhem, M. A.; Chtourou, H., Efficient robustness measures for the resource-constrained project scheduling problem, Int. J. Ind. Syst. Eng., 14, 2, 245-267 (2013)
[30] Kuo, T.-C.; Chang, S.-H.; Huang, S.-N., Due-date performance improvement using TOC’s aggregated time buffer method at a wafer fabrication factory, Expert Syst. Appl., 36, 2, 1783-1792 (2009)
[31] Knobloch, R.; Mlýnek, J.; Srb, R., The classic differential evolution algorithm and its convergence properties, Application of Mathematics, 62, 2, 197-208 (2017) · Zbl 1458.65065
[32] Leus, R., 2003. The generation of stable project plans. Ph.D. thesis, Department of applied economics, Katholieke Universiteit Leuven, Belgium. · Zbl 1136.90354
[33] Liang, Y.; Cui, N.; Wang, T.; Demeulemeester, E., Robust resource-constrained max-NPV project scheduling with stochastic activity duration, OR Spectrum, 41, 1, 219-254 (2019) · Zbl 1527.90104
[34] Liang, Y.; Cui, N.; Hu, X.; Demeulemeester, E., The integration of resource allocation and time buffer for bi-objective robust project scheduling, Int. J. Prod. Res., 58, 13, 3839-3854 (2019) · Zbl 1432.35092
[35] Lamas, P.; Demeulemeester, E., A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations, J. Sched., 19, 4, 409-428 (2016) · Zbl 1347.90045
[36] Leon, V. J.; Wu, S. D.; Storer, R. H., Robustness measures and robust scheduling for job-shop, IIE Trans., 26, 5, 32-43 (1994)
[37] Lambrechts, O.; Demeulemeester, E.; Herroelen, W., Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities, J. Sched., 11, 2, 121-136 (2008) · Zbl 1168.90453
[38] Lambrechts, O.; Demeulemeester, E.; Herroelen, W., A tabu search procedure for developing robust predictive project schedules, Int. J. Prod. Econ., 111, 2, 493-508 (2008)
[39] Li, L.; Liu, W.; Chen, Y.; Yang, S., Reactive procedure for robust project scheduling under the activity disruptions, KSCE J. Civ. Eng., 25, 9, 3213-3222 (2021)
[40] Paprocka, I.; Czuwaj, W., Location selection and size estimation of resource buffers in the critical chain project management method, Appl. Mech. Mater., 809-810, 1390-1395 (2015)
[41] Policella, N., Scheduling with Uncertainty—A Proactive Approach using Partial Order Schedules (2005), Universita degli Studi di Roma “La Sapienza”: Universita degli Studi di Roma “La Sapienza” Italy, Ph.D. thesis · Zbl 1161.68366
[42] Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK® Guide) (2017), Project Management Institute Inc.: Project Management Institute Inc. Newtown Square, USA
[43] Mehta, S.; Uzsoy, R., Predictable scheduling of a job shop subject to breakdowns, IEEE Trans. Robotics Automation, 14, 3, 365-378 (1998)
[44] Moradi, H.; Shadrokh, S., A robust scheduling for the multi-mode project scheduling problem with a given deadline under uncertainty of activity duration, Int. J. Prod. Res., 57, 10, 3138-3167 (2019)
[45] Moradi, M.; Hafezalkotob, A.; Ghezavati, V., Robust resource-constrained project scheduling problem of the project’s subcontractors in cooperative environment under uncertainty: social complex construction case study, Comput. Ind. Eng., 133, 19-28 (2019)
[46] Newbold, R. C., Project Management in the Fast Lane: Applying the Theory of Constraints (1998), St. Lucie Press: St. Lucie Press New York
[47] Ranjbar, M.; Kianfar, F., Solving the discrete time/resource trade-off problem with genetic algorithm, Appl. Math. Comput., 191, 2, 451-456 (2007) · Zbl 1193.90110
[48] Ranjbar, M.; De Reyck, B.; Kianfar, F., A hybrid scatter search for discrete time/resource trade-off problem in project scheduling, Eur. J. Oper. Res., 193, 1, 35-48 (2009) · Zbl 1152.90464
[49] Rogalsky, T.; Derksen, R. W., Hybridization of differential evolution for aerodynamic design, (Paper presented at the 8th Annual Conference of the Computational Fluid Dynamics Society, Canada (2000)), 729-736
[50] Storn, R.; Price, K., Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341-359 (1997) · Zbl 0888.90135
[51] Shariatmadari, M.; Nahavandi, N., A new resource buffer insertion approach for proactive resource investment problem, Comput. Ind. Eng., 146, Article 106582 pp. (2020)
[52] Tian, W.; Demeulemeester, E., On the interaction between roadrunner or railway scheduling and priority lists or resource flow networks, Flexible Services Manuf. J., 25, 1-2, 145-174 (2013)
[53] Tian, W.; Demeulemeester, E., Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment, Ann. Oper. Res., 213, 1, 271-291 (2014) · Zbl 1296.90060
[54] Tian, W.; Xu, J.; Fu, Z., On the choice of baseline schedules for the discrete time/resource trade-off problem under stochastic environment, J. Difference Equations Applications, 23, 1-2, 55-65 (2017) · Zbl 1372.90057
[55] Tukel, O. I.; Rom, W. O.; Eksioglu, S. D., An investigation of buffer sizing techniques in critical chain scheduling, Eur. J. Oper. Res., 172, 2, 401-416 (2006) · Zbl 1120.90024
[56] Umble, M.; Umble, E. J., Utilizing buffer management to improve performance in a healthcare environment, Eur. J. Oper. Res., 174, 2, 1060-1075 (2006) · Zbl 1103.90363
[57] Van de Vonder, S.; Demeulemeester, E.; Herroelen, W.; Leus, R., The use of buffers in project management: the trade-off between stability and makespan, Int. J. Prod. Econ., 97, 2, 227-240 (2005)
[58] Van de Vonder, S.; Demeulemeester, E.; Herroelen, W.; Leus, R., The trade-off between stability and makespan in resource-constrained project scheduling, Int. J. Prod. Res., 44, 2, 215-236 (2006)
[59] Van de Vonder, S.; Ballestín, F.; Demeulemeester, E.; Herroelen, W., Heuristic procedures for reactive project scheduling, Comput. Ind. Eng., 52, 1, 11-28 (2007)
[60] Van de Vonder, S.; Demeulemeester, E.; Herroelen, W., A classification of predictive-reactive project scheduling procedures, J. Sched., 10, 3, 195-207 (2007) · Zbl 1168.90474
[61] Wang, J. J.; Hu, X. J.; Demeulemeester, E.; Zhao, Y., A bi-objective robust resource allocation model for the RCPSP considering resource transfer costs, Int. J. Prod. Res., 59, 2, 367-387 (2021)
[62] Ward, S.; Chapman, G., Transforming project risk management into project uncertainty management, Int. J. Project Manage., 21, 97-105 (2003)
[63] Hu, X.; Cui, N.; Demeulemeester, E.; Bie, L., Incorporation of activity sensitivity measures into buffer management to manage project schedule risk, Eur. J. Oper. Res., 249, 2, 717-727 (2016)
[64] Hu, X.; Demeulemeester, E.; Cui, N.; Wang, J.; Tian, W., Improved critical chain buffer management framework considering resource costs and schedule stability, Flexible Services Manufacturing J., 29, 2, 159-183 (2017)
[65] Yang, J. B., How the critical chain scheduling method is working for construction, Cost Eng., 49, 4, 25-32 (2007)
[66] Yeo, K. T.; Ning, J.h., Integrating supply chain and critical chain concepts in engineer-procure-construct (EPC) projects, Int. J. Project Manage., 20, 4, 253-262 (2002)
[67] Zhao, Y.; Cui, N.; Tian, W., A two-stage approach for the critical chain project rescheduling, Ann. Oper. Res., 285, 9, 67-95 (2020)
[68] Zhang, Z.; Zhong, X. J., Time/resource trade-off in the robust optimization of resource-constraint project scheduling problem under uncertainty, J. Ind. Prod. Eng., 35, 4, 243-254 (2018)
[69] Zahid, T.; Agha, M. H.; Schmidt, T., Investigation of surrogate measure of robustness for project scheduling, Comput. Ind. Eng., 129, 220-227 (2019)
[70] Zhu, G.; Bard, J. F.; Yu, G., Disruption management for resource constrained project scheduling, J. Operation Res. Society, 56, 4, 365-381 (2005) · Zbl 1104.90025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.