×

Gevrey semigroup of the type III localized thermoelastic model. (English) Zbl 1510.74021

In this paper the authors consider an Euler-Bernouilli thermoelastic beam of type III (in the sense of Green and Naghdi) when the thermal effects are localized in a sub-interval of the domain determined by the beam. Boundary and transmission conditions are imposed. Existence and uniqueness of the solutions are obtained by means of the linear operator semigroup theory. The most relevant contribution of the article consists in the demonstration that the semigroup that determines the solutions is of the \(\beta\)-Gevrey (\(\beta > 8\)) type, after an interesting and beautiful mathematical analysis. Regularity of the solutions and exponential decay are two direct consequences.

MSC:

74F05 Thermal effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H20 Existence of solutions of dynamical problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
74H30 Regularity of solutions of dynamical problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[2] Crandall, M. G.; Pazy, A., On the differentiability of weak solutions of a differential equation in Banach space, J. Math. Mech., 18, 10, 1007-1016 (1969) · Zbl 0177.42901
[3] Taylor, S., Chapter “Gevrey semigroups” (1989), School of Mathematics, University of Minnesota, Ph.D. Thesis
[4] Davies, E. B., One Parameter Semigroups, London Math. Soc. Mono., vol. 15 (1980), Academic Press: Academic Press New York · Zbl 0457.47030
[5] Gómez Ávalos, G.; Muñoz Rivera, J.; Liu, Z., Gevrey class of locally dissipative Euler-Bernoulli beam equation, SIAM J. Control Optim., 59, 2174-2194 (2021) · Zbl 1467.35077
[6] Green, A. E.; Naghdi, P. M., A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. Lond. A, 432, 171-194 (1991) · Zbl 0726.73004
[7] Green, A. E.; Naghdi, P. M., On undamped heat waves in an elastic solid, J. Therm. Stresses, 15, 253-264 (1992)
[8] Green, A. E.; Naghdi, P. M., Thermoelasticity without energy dissipation, J. Elast., 31, 189-208 (1993) · Zbl 0784.73009
[9] Green, A. E.; Naghdi, P. M., A unified procedure for construction of theories of deformable media. I. Classical continuum physics, Proc. R. Soc. Lond. A, 448, 335-356 (1995); Green, A. E.; Naghdi, P. M., A unified procedure for construction of theories of deformable media. II. Generalized continua, Proc. R. Soc. Lond. A, 448, 357-377 (1995); Green, A. E.; Naghdi, P. M., A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua, Proc. R. Soc. Lond. A, 448, 379-388 (1995) · Zbl 0868.73013
[10] Engel, Klaus-Jochen; Nagel, Rainer, One Parameter Semigroups for Linear Evolution Equations (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0952.47036
[11] Messaoudi, Salim A.; Said-Houari, Belkacem, Energy decay in a transmission problem in thermoelasticity of type III, IMA J. Appl. Math., 74, 3, 344-360 (2009) · Zbl 1169.80301
[12] Liu, K.; Liu, Z., Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping, SIAM J. Control Optim., 36, 3, 1086-1098 (1998) · Zbl 0909.35018
[13] Fatori, L. H.; Muñoz Rivera, J. E.; Nunes Monteiro, R., Energy decay to Timoshenko’s system with thermoelasticity of type III, Asymptot. Anal., 86, 1, 227-247 (2014) · Zbl 1294.80003
[14] Pazy, A., Semigroup of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[15] Quintanilla, R.; Racke, R., Stability in thermoelasticity of type III, Discrete Contin. Dyn. Syst., Ser. B, 3, 383-400 (2003) · Zbl 1118.74012
[16] Martin, S.; Quintanilla, R., Existence of unbounded solutions in thermoelasticity, (Monaco, Roberto; Bianchi, Miriam Pandolfi; Rionero, Salvatore, Proceedings of the 11th Conference on WAS-COM 2001 (2002), World Scientific), Waves and Stability in Continuous Media
[17] Quintanilla, R.; Straughan, B., Growth and uniqueness in thermoelasticity, Proc. R. Soc. Lond. A, 456, 1419-1429 (2000) · Zbl 0985.74018
[18] Quintanilla, R., Damping of end effects in a thermoelastic theory, Appl. Math. Lett., 14, 137-141 (2001) · Zbl 0971.74037
[19] Quintanilla, R., Instability and non-existence in the nonlinear theory of thermoelasticity without energy dissipation, Contin. Mech. Thermodyn., 13, 121-129 (2001) · Zbl 1001.74037
[20] Quintanilla, R., Structural stability and continuous dependence of solutions in thermoelasticity of type III, Discrete Contin. Dyn. Syst., Ser. B, 1, 463-470 (2001) · Zbl 1010.74016
[21] Quintanilla, R., On existence in thermoelasticity without energy dissipation, J. Therm. Stresses, 25, 195-202 (2002)
[22] Reissig, M.; Wang, Y. G., Cauchy problems for linear thermoelastic systems of type III in one space variable, Math. Methods Appl. Sci., 28, 1359-1381 (2005) · Zbl 1070.35111
[23] Yang, L.; Wang, Y. G., Well-posedness and decay estimates for cauchy problems of linear thermoelastic systems of type III in 3-D, Indiana Univ. Math. J., 55, 1333-1361 (2006) · Zbl 1112.35008
[24] Zhang, X.; Zuazua, E., Decay rates for the system of thermoelasticity of type III, Commun. Contemp. Math., 5, 25-83 (2003) · Zbl 1136.74318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.