×

Nilpotent structures of neutral 4-manifolds and light-like surfaces. (English) Zbl 1509.53032

Albujer, Alma L. (ed.) et al., Developments in Lorentzian geometry. Selected papers based on the presentations at the 10th international meeting on Lorentzian geometry, GeLoCor 2021, Cordoba, Spain, February 1–5, 2021. Cham: Springer. Springer Proc. Math. Stat. 389, 13-28 (2022).
Let \(M\) be an oriented 4-dimensional manifold with neutral metric \(h\). Let \(U_0(\Lambda_{\pm}^2 TM)\) be bundles, contained in subbundles \(\Lambda_{\pm}^2 TM\) of rank 3 in the 2-fold power \(\Lambda^2 TM\) of \(TM\), whose fibers are light-like cones. A \((1,1)\)-tensor field \(N\) of \(M\) is an almost nilpotent structure of \(M\) if \(N\) gives a nilpotent structure of the tangent space of \(M\) at each point.
The author studies almost nilpotent structures of \((M,h)\) and light-like surfaces in \((M,h)\). An almost nilpotent structure \(N\) of \(M\) gives a light-like 2-plane of the tangent space at each point of \(M\) which can be considered as a light-like two-dimensional distribution \(\mathfrak{D}\). It is shown there exists the interdependence between \(N\) and the corresponding section \(\Theta\) of either \(U_0(\Lambda_{+}^2 TM)\) or \(U_0(\Lambda_{-}^2 TM)\). Especially, the author discusses the distributions \(\mathfrak{D}\) on conditions that they are involutive. This discussion makes possibly also to study light-like surfaces in \(M\) which are integral surfaces of involutive distributions \(\mathfrak{D}\). These light-like surfaces with local horizontal lifts are characterized using the curvature tensors. It is shown that they are analogues of isotrophic minimal surfaces in Riemannian 4-manifolds.
An analogy between nilpotent structures of neutral 4-manifolds from one side, and complex and para-complex structures from other side are established.
For the entire collection see [Zbl 1497.53003].

MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C40 Global submanifolds
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
Full Text: DOI

References:

[1] N. Ando, Complex curves and isotropic minimal surfaces in hyperKähler 4-manifolds, Recent Topics in Differential Geometry and its Related Fields, 45-61, World Scientific, 2019. · Zbl 1519.53011
[2] Ando, N., Surfaces in pseudo-Riemannian space forms with zero mean curvature vector, Kodai Math. J., 43, 193-219 (2020) · Zbl 1479.53021 · doi:10.2996/kmj/1584345694
[3] Ando, N., Surfaces with zero mean curvature vector in neutral \(4\)-manifolds, Diff. Geom. Appl., 72 (2020) · Zbl 1445.53011 · doi:10.1016/j.difgeo.2020.101647
[4] N. Ando, The lifts of surfaces in neutral 4-manifolds into the 2-Grassmann bundles, preprint. · Zbl 1540.53031
[5] Ando, N.; Kihara, T., Horizontality in the twistor spaces associated with vector bundles of rank 4 on tori, J. Geom., 112, 19 (2021) · Zbl 1473.53075 · doi:10.1007/s00022-021-00583-6
[6] Blair, D.; Davidov, J.; Muškarov, O., Hyperbolic twistor spaces, Rocky Mountain J. Math., 35, 1437-1465 (2005) · Zbl 1103.53025 · doi:10.1216/rmjm/1181069645
[7] Bryant, R., Conformal and minimal immersions of compact surfaces into the \(4\)-sphere, J. Differential Geom., 17, 455-473 (1982) · Zbl 0498.53046 · doi:10.4310/jdg/1214437137
[8] Davidov, J.; Díaz-Ramos, JC; García-Río, E.; Matsushita, Y.; Muškarov, O.; Vázquez-Lorenzo, R., Almost Kähler Walker 4-manifolds, J. Geom. Phys., 57, 1075-1088 (2007) · Zbl 1106.53046 · doi:10.1016/j.geomphys.2006.09.003
[9] Davidov, J.; Díaz-Ramos, JC; García-Río, E.; Matsushita, Y.; Muškarov, O.; Vázquez-Lorenzo, R., Hermitian-Walker 4-manifolds, J. Geom. Phys., 58, 307-323 (2008) · Zbl 1135.53049 · doi:10.1016/j.geomphys.2007.11.006
[10] Davidov, J.; Grantcharov, G.; Muškarov, O.; Yotov, M., Compact complex surfaces with geometric structures related to split quaternions, Nuclear Physics B, 865, 330-352 (2012) · Zbl 1262.81130 · doi:10.1016/j.nuclphysb.2012.07.024
[11] Eells, J.; Salamon, S., Twistorial construction of harmonic maps of surfaces into four-manifolds, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 12, 589-640 (1985) · Zbl 0627.58019
[12] Friedrich, T., On surfaces in four-spaces, Ann. Glob. Anal. Geom., 2, 257-287 (1984) · Zbl 0562.53039 · doi:10.1007/BF01876417
[13] Hasegawa, K.; Miura, K., Extremal Lorentzian surfaces with null \(\tau \)-planar geodesics in space forms, Tohoku Math. J., 67, 611-634 (2015) · Zbl 1334.53057 · doi:10.2748/tmj/1450798076
[14] Jensen, G.; Rigoli, M., Neutral surfaces in neutral four-spaces, Matematiche (Catania), 45, 407-443 (1990) · Zbl 0757.53035
[15] Kamada, H., Neutral hyperKähler structures on primary Kodaira surfaces, Tsukuba J. Math., 23, 321-332 (1999) · Zbl 0948.53023 · doi:10.21099/tkbjm/1496163875
[16] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford (2) 1 (1950) 69-79. · Zbl 0036.38303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.