×

The two-scale-transformation method. (English) Zbl 1509.35311

Summary: We present the two-scale-transformation method which allows rigorous homogenisation of problems defined in locally periodic domains. This method transforms such problems into periodic domains in order to facilitate the passage to the limit. The idea of transforming problems into periodic domains originates from the homogenisation of problems defined in evolving microstructure and has been applied in several works. However, only the homogenisation of the periodic substitute problems was proven, whereas the method itself was just postulated (i.e. the equivalence to the homogenisation of the actual problem had to be assumed). In this work, we develop this idea further and formulate a rigorous two-scale convergence concept for microscopic transformation. Thus, we can prove that the homogenisation of the periodic substitute problem is equivalent to the homogenisation of the actual problem. Moreover, we show a new two-scale transformation rule for gradients which enables the derivation of new limit problems that are now transformationally independent.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
74Q15 Effective constitutive equations in solid mechanics
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure

References:

[1] G. Allaire, Homogenization and two-scale convergence, Siam J. Math. Anal. 23 (1992), 1482-1518. doi:10.1137/0523084. · Zbl 0770.35005 · doi:10.1137/0523084
[2] G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 297-342. doi:10.1017/S0308210500022757. · Zbl 0866.35017 · doi:10.1017/S0308210500022757
[3] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, Siam J. Math. Anal. 40 (1992), 1585-1620. doi:10.1137/080713148. · Zbl 1167.49013 · doi:10.1137/080713148
[4] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C. R. Acad. Sci. Paris Sér. 1(335) (2002), 99-104. doi:10.1016/S1631-073X(02)02429-9. · Zbl 1001.49016 · doi:10.1016/S1631-073X(02)02429-9
[5] M. Eden and A. Muntean, Homogenization of a fully coupled thermoelasticity problem for a highly heterogeneous medium with a priori known phase transformations, Math. Methods Appl. Sci. 40 (2017), 955-3972. · Zbl 1408.74005
[6] M. Gahn, M. Neuss-Radu and I.S. Pop, Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions, J. Differ. Equations 289 (2021), 95-127. doi:10.1016/j.jde.2021.04. 013. · Zbl 1486.35027 · doi:10.1016/j.jde.2021.04.013
[7] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), 35-86. · Zbl 1061.35015
[8] D. Wiedemann / The two-scale-transformation method · Zbl 1509.35311
[9] M.A. Peter, Homogenisation in domains with evolving microstructure, C. R. Mecanique 335 (2007), 357-362. doi:10. 1016/j.crme.2007.05.024. · Zbl 1132.74036 · doi:10.1016/j.crme.2007.05.024
[10] M.A. Peter, Homogenisation of a chemical degradation mechanism inducing an evolving microstructure, C. R. Mecanique 335 (2007), 679-684. doi:10.1016/j.crme.2007.09.003. · Zbl 1136.35310 · doi:10.1016/j.crme.2007.09.003
[11] M.A. Peter and M. Böhm, Coupled reaction-diffusion processes inducing an evolution of the microstructure: Analysis and homogenization, Nonlinear Anal. 70 (2009), 806-821. doi:10.1016/j.na.2008.01.011. · Zbl 1151.35308 · doi:10.1016/j.na.2008.01.011
[12] M.A. Peter and M. Böhm, Multiscale modelling of chemical degradation mechanisms in porous media with evolving microstructure, Multiscale Model. Simul. 7 (2009), 1643-1668. doi:10.1137/070706410. · Zbl 1181.35019 · doi:10.1137/070706410
[13] E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory, Lect. Notes Phys., Vol. 127, Springer, Berlin, Hei-delberg, 1980. · Zbl 0432.70002
[14] L. Tartar, Convergence of the homogenization process, Appendix of [12].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.