×

Polarization tensor vanishing structure of general shape: existence for small perturbations of balls. (English) Zbl 1509.35294

Summary: The polarization tensor is a geometric quantity associated with a domain. It is a signature of the small inclusion’s existence inside a domain and used in the small volume expansion method to reconstruct small inclusions by boundary measurements. In this paper, we consider the question of the polarization tensor vanishing structure of general shape. The only known examples of the polarization tensor vanishing structure are concentric disks and balls. We prove, by the implicit function theorem on Banach spaces, that a small perturbation of a ball can be enclosed by a domain so that the resulting inclusion of the core-shell structure becomes polarization tensor vanishing. The boundary of the enclosing domain is given by a sphere perturbed by spherical harmonics of degree zero and two. This is a continuation of the earlier work [the authors, Appl. Anal. 101, No. 4, 1330–1353 (2022; Zbl 1489.35043)] for two dimensions.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
35N25 Overdetermined boundary value problems for PDEs and systems of PDEs
35B20 Perturbations in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

Citations:

Zbl 1489.35043

References:

[1] H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Math., Vol. 1846, Springer-Verlag, 2004. · Zbl 1113.35148
[2] H. Ammari and H. Kang, Polarization and Moment Tensors, Applied Mathematical Sciences, Vol. 162, Springer, New York, 2007. · Zbl 1220.35001
[3] H. Ammari and H. Kang, Expansion methods, in: Handbook of Mathematical Mehtods of Imaging, Springer, 2011, pp. 447-499. doi:10.1007/978-0-387-92920-0_11. · Zbl 1259.00009 · doi:10.1007/978-0-387-92920-0_11
[4] H. Ammari, H. Kang, E. Kim and M. Lim, Reconstruction of closely spaced small inclusions, SIAM Journal on Numerical Analysis 42(6) (2005), 2408-2428. doi:10.1137/S0036142903422752. · Zbl 1081.35133 · doi:10.1137/S0036142903422752
[5] K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, Lecture Notes in Math., Vol. 2044, Springer-Verlag, 2012. · Zbl 1254.41015
[6] G. Bal and O. Pinaud, Small volume expansions for elliptic equations, Asymptotic Analysis 70 (2010), 13-50. doi:10. 3233/ASY-2010-1002. · Zbl 1229.35318 · doi:10.3233/ASY-2010-1002
[7] Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, Math. Model. Numer. Anal. 37(1) (2003), 159-174. doi:10.1051/ m2an:2003014. · Zbl 1137.35346 · doi:10.1051/m2an:2003014
[8] D.J. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems 14 (1998), 553-594. doi:10.1088/0266-5611/14/3/011. · Zbl 0916.35132 · doi:10.1088/0266-5611/14/3/011
[9] T. Feng, H. Kang and H. Lee, Construction of GPT-vanishing structures using shape derivative, J. Comp. Math. 35 (2017), 569-585. doi:10.4208/jcm.1605-m2016-0540. · Zbl 1413.65394 · doi:10.4208/jcm.1605-m2016-0540
[10] H. Kang et al. / Polarization tensor vanishing structure of general shape
[11] Z. Hashin, The elastic moduli of heterogeneous materials, J. Appl. Mech. 29 (1962), 143-150. doi:10.1115/1.3636446. · Zbl 0102.17401 · doi:10.1115/1.3636446
[12] Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phy. 33 (1962), 3125-3131. doi:10.1063/1.1728579. · Zbl 0111.41401 · doi:10.1063/1.1728579
[13] Y.-G. Ji, H. Kang, X. Li and S. Sakaguchi, Neutral inclusions, weakly neutral inclusions, and an over-determined problem for confocal ellipsoids, in: Geometric Properties of Parabolic and Elliptic PDE’s, Springer INdAM Series, to appear, arXiv:2001.04610.
[14] H. Kang and H. Lee, Coated inclusions of finite conductivity neutral to multiple fields in two dimensional conductivity or anti-plane elasticity, Euro. J. Appl. Math. 25(3) (2014), 329-338. doi:10.1017/S0956792514000060. · Zbl 1302.74064 · doi:10.1017/S0956792514000060
[15] H. Kang, H. Lee and S. Sakaguchi, An over-determined boundary value problem arising from neutrally coated inclusions in three dimensions, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze XVI(4) (2016), 1193-1208. · Zbl 1364.35208
[16] H. Kang, X. Li and S. Sakaguchi, Existence of weakly neutral coated inclusions of general shape in two dimensions, Appl. Anal., published online. doi:10.1080/00036811.2020.1781821. · Zbl 1489.35043 · doi:10.1080/00036811.2020.1781821
[17] S.G. Krantz and H.R. Parks, The Implicit Function Theorem: History, Theory, and Applications, Springer Sci-ence+Business Media, New York, 2003. · Zbl 1269.58003
[18] G.W. Milton, The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, Cam-bridge University Press, 2002. · Zbl 0993.74002
[19] G.W. Milton and S.K. Serkov, Neutral coated inclusions in conductivity and anti-plane elasticity, Proc. R. Soc. Lond. A 457 (2001), 1973-1997. doi:10.1098/rspa.2001.0796. · Zbl 1090.74558 · doi:10.1098/rspa.2001.0796
[20] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. · Zbl 0207.13501
[21] M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, Math. Model. Numer. Anal. 34 (2000), 723-748. doi:10.1051/m2an:2000101. · Zbl 0971.78004 · doi:10.1051/m2an:2000101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.