×

Ramsey degrees of ultrafilters, pseudointersection numbers, and the tools of topological Ramsey spaces. (English) Zbl 1508.03079

Given an ultrafilter \(\mathcal U\) on \(\omega\), the Ramsey degree of \(\mathcal U\) for \(n\)-tuples, denoted \(t(\mathcal U,n)\), is the smallest number \(t\) (if some such number exists) such that given any \(\ell \geq 2\) and any coloring \(c: [\omega]^n \rightarrow \ell\), there is some \(X \in \mathcal U\) such that the restriction of \(c\) to \([X]^n\) has \(\leq\!t\) colors. For example, \(\mathcal U\) is a Ramsey ultrafilter if and only if \(t(\mathcal U,n) = 1\) for all \(n\), and \(\mathcal U\) is a weakly Ramsey ultrafilter if \(t(\mathcal U,2) = 2\).
A number of \(\sigma\)-closed posets can be used to add ultrafilters with finite Ramsey degrees. The most well-known example of this is that forcing with \(\mathcal P(\omega) / \mathrm{Fin}\) adds a Ramsey ultrafilter, i.e., an ultrafilter with Ramsey degree \(t(\mathcal U,n) = 1\) for every \(n\). While many other \(\sigma\)-closed forcings are known to generate ultrafilters with finite Ramsey degrees, the precise value of these degrees is often difficult to determine, and had remained unknown in many cases. In this paper, the authors present a general method for calculating these numbers using the tools of topological Ramsey spaces. They are able to determine the Ramsey degrees of several classes of ultrafilters generated by \(\sigma\)-closed forcings whose degrees were not previously known.
Later in the paper, the authors also investigate the pseudointersection and tower numbers for these same \(\sigma\)-closed forcings, emphasizing the relationship of these numbers with the classical cardinal characteristic \(\mathfrak{p}\). It remains an interesting open question whether the pseudointersection and tower numbers associated to a given topological Ramsey space must be equal to each other.

MSC:

03E02 Partition relations
03E05 Other combinatorial set theory
03E17 Cardinal characteristics of the continuum
03E35 Consistency and independence results
03E50 Continuum hypothesis and Martin’s axiom
05C55 Generalized Ramsey theory
05D10 Ramsey theory
54D99 Fairly general properties of topological spaces

References:

[1] Arias, A.; Dobrinen, N.; Girón-Garnica, G.; Mijares, J. G., Banach spaces from barriers in topological Ramsey spaces, J. Log. Anal., 10, 5, 42 (2018) · Zbl 1405.46006
[2] Bartoszyński, T.; Judah, H., Set Theory on the Structure of the Real Line (1995), Peters, Ltd: A. K, Peters, Ltd · Zbl 0834.04001
[3] Baumgartner, JE; Taylor, AD, Partition theorems and ultrafilters, Trans. Am. Math. Soc., 241, 283-309 (1978) · Zbl 0386.03024 · doi:10.1090/S0002-9947-1978-0491193-1
[4] Bell, M., On the combinatorial principle p(c), Found. Math., 114, 149-157 (1981) · Zbl 0581.03038 · doi:10.4064/fm-114-2-149-157
[5] Blass, A., The Rudin-Keisler ordering of P-Points, Trans. Am. Math. Soc., 179, 145-166 (1973) · Zbl 0269.02025
[6] Blass, A., Ultrafilter mappings and their Dedekind cuts, Trans. Am. Math. Soc., 188, 2, 327-340 (1974) · Zbl 0305.02065 · doi:10.1090/S0002-9947-1974-0351822-6
[7] Blass, A., Ultrafilters related to Hindman’s finite-unions theorem and its extensions, Contemp. Math., 65, 89-124 (1987) · Zbl 0634.03045 · doi:10.1090/conm/065/891244
[8] Blass, A., Selective ultrafilters and homogeneity, Ann. Pure Appl. Logic, 38, 215-255 (1988) · Zbl 0649.03036 · doi:10.1016/0168-0072(88)90027-9
[9] Blass, A., Dobrinen, N., Raghavan, D.: The next best thing to a P-point. J. Symb. Logic 80(3), 866-900 · Zbl 1367.03078
[10] Carlson, TJ, Some unifying principles in Ramsey theory, Discret. Math., 68, 2-3, 117-169 (1988) · Zbl 0817.04002 · doi:10.1016/0012-365X(88)90109-4
[11] Carlson, TJ; Simpson, SG, A dual form of Ramsey’s theorem, Adv. Math., 53, 3, 265-290 (1984) · Zbl 0564.05005 · doi:10.1016/0001-8708(84)90026-4
[12] Carlson, T.J., Simpson, S.G.: Topological Ramsey theory. In: Mathematics of Ramsey theory, volume 5 of Algorithms and Combinatorics, pp. 172-183. Springer (1990) · Zbl 0764.54020
[13] DiPrisco, C.; Mijares, JG; Nieto, J., Local Ramsey theory. An abstract approach, Math. Logic Q., 63, 5, 384-396 (2017) · Zbl 1469.03127
[14] Dobrinen, N., High dimensional Ellentuck spaces and initial chains in the Tukey structure of non-p-points, J. Symb. Log., 81, 1, 237-263 (2016) · Zbl 1436.03244 · doi:10.1017/jsl.2015.10
[15] Dobrinen, N., Infinite dimensional Ellentuck spaces and Ramsey-classification theorems, J. Math. Logic, 16, 1, 37 (2016) · Zbl 1436.03245 · doi:10.1142/S0219061316500033
[16] Dobrinen, N.: Topological Ramsey spaces dense in forcings. In: Structure and Randomness in Computability and Set Theory, p. 32. World Scientific (2021) · Zbl 1528.03193
[17] Dobrinen, N.; Hathaway, D., Classes of barren extensions, J. Symb. Logic., 86, 1, 178-209 (2021) · Zbl 1487.03056 · doi:10.1017/jsl.2020.40
[18] Dobrinen, N., Mijares, J.G., Trujillo, T.: Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points. Archive for Mathematical Logic, special issue in honor of James E. Baumgartner 56(7-8), 733-782. (Invited submission) · Zbl 1417.03245
[19] Dobrinen, N.; Todorcevic, S., Tukey types of ultrafilters, Ill. J. Math., 55, 3, 907-951 (2011) · Zbl 1291.03083
[20] Dobrinen, N.; Todorcevic, S., A new class of Ramsey-classification Theorems and their applications in the Tukey theory of ultrafilters, Part 1, Trans. Am. Math. Soc., 366, 3, 1659-1684 (2014) · Zbl 1283.05260 · doi:10.1090/S0002-9947-2013-05844-8
[21] Dobrinen, N.; Todorcevic, S., A new class of Ramsey-classification Theorems and their applications in the Tukey theory of ultrafilters, Part 2, Trans. Am. Math. Soc., 367, 7, 4627-4659 (2015) · Zbl 1311.05202 · doi:10.1090/S0002-9947-2014-06122-9
[22] Ellentuck, E., A new proof that analytic sets are Ramsey, J. Symb. Log., 39, 1, 163-165 (1974) · Zbl 0292.02054 · doi:10.2307/2272356
[23] Erdős, P.; Rado, R., Combinatorial theorems on classifications of subsets of a given set, Proc. Lond. Math. Soc., 3, 2, 417-439 (1952) · Zbl 0048.28203 · doi:10.1112/plms/s3-2.1.417
[24] Galvin, F., Prikry, K.: Borel sets and Ramsey’s Theorem. J. Symb. Logic 38 (1973) · Zbl 0276.04003
[25] Gowers, WT, An infinite Ramsey theorem and some Banach-space dichotomies, Ann. Math., 156, 3, 797-833 (2002) · Zbl 1030.46005 · doi:10.2307/3597282
[26] Henle, J.M., Mathias, A.R.D., Woodin, W.H.: A barren extension. In: Methods in mathematical logic. Lecture Notes in Mathematics, 1130, Springer (1985) · Zbl 0594.03030
[27] Hindman, N., Finite sums from sequences within cells of a partition of \(n\), J. Combinat. Theory. Ser. A, 17, 1-11 (1974) · Zbl 0285.05012 · doi:10.1016/0097-3165(74)90023-5
[28] Kurilić, MS, Forcing with copies of countable ordinals, Proc. Am. Math. Soc., 143, 4, 1771-1784 (2015) · Zbl 1386.03065 · doi:10.1090/S0002-9939-2014-12360-4
[29] Laflamme, C., Forcing with filters and complete combinatorics, Ann. Pure Appl. Logic, 49, 2, 125-163 (1989) · Zbl 0681.03035 · doi:10.1016/0168-0072(89)90052-3
[30] Malliaris, M.; Shelah, S., General topology meets model theory, on \(\mathfrak{p}\) and \(\mathfrak{t} \), Proc. Natl. Acad. Sci. USA, 110, 3, 13300-13305 (2013) · Zbl 1301.03041 · doi:10.1073/pnas.1306114110
[31] Malliaris, M.; Shelah, S., Cofinality spectrum theorems in model theory, set theory, and general topology, J. Am. Math. Soc., 29, 1, 237-297 (2016) · Zbl 1477.03125 · doi:10.1090/jams830
[32] Matet, P., Partitions and Filters, J. Symb. Logic, 51, 1, 12-21 (1986) · Zbl 0588.04011 · doi:10.2307/2273937
[33] Mathias, ARD, Happy families, Ann. Math. Logic, 12, 1, 59-111 (1977) · Zbl 0369.02041 · doi:10.1016/0003-4843(77)90006-7
[34] Mijares, JG, A notion of selective ultrafilter corresponding to topological Ramsey spaces, Math. Log. Q., 53, 3, 255-267 (2007) · Zbl 1126.03044 · doi:10.1002/malq.200510045
[35] Mildenberger, H., On Milliken-Taylor ultrafilters, Notre Dame J. Formal Logic, 52, 4, 381-394 (2011) · Zbl 1258.03056 · doi:10.1215/00294527-1499345
[36] Milliken, KR, A partition theorem for the infinite subtrees of a tree, Trans. Am. Math. Soc., 263, 1, 137-148 (1981) · Zbl 0471.05026 · doi:10.1090/S0002-9947-1981-0590416-8
[37] Nash-Williams, CSJA, On well-quasi-ordering transfinite sequences, Proc. Camb. Philos. Soc., 61, 33-39 (1965) · Zbl 0129.00602 · doi:10.1017/S0305004100038603
[38] Ramsey, FP, On a problem of formal logic, Proc. Lond. Math. Soc., 30, 264-296 (1929) · JFM 55.0032.04
[39] Silver, J., Every analytic set is Ramsey, J. Symb. Log., 35, 60-64 (1970) · Zbl 0216.01304 · doi:10.1017/S0022481200092239
[40] Szymański, A., Xua, Z.H.: The behaviour of \(\omega^{2^*}\) under some consequences of Martin’s axiom. In: General Topology and Its Relations to Modern Analysis and Algebra, V (Prague, 1981) (1983) · Zbl 0506.54007
[41] Todorcevic, S.: Introduction to Ramsey Spaces. Princeton University Press (2010) · Zbl 1205.05001
[42] Trujillo, T.: Topological Ramsey spaces, associated ultrafilters, and their applications to the Tukey theory of ultrafilters and Dedekind cuts of nonstandard arithmetic. Ph.D. thesis, University of Denver (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.