×

Learning constitutive models from microstructural simulations via a non-intrusive reduced basis method. (English) Zbl 1506.74234

Summary: In order to optimally design materials, it is crucial to understand the structure-property relations in the material by analyzing the effect of microstructure parameters on the macroscopic properties. In computational homogenization, the microstructure is thus explicitly modeled inside the macrostructure, leading to a coupled two-scale formulation. Unfortunately, the high computational costs of such multiscale simulations often render the solution of design, optimization, or inverse problems infeasible. To address this issue, we propose in this work a non-intrusive reduced basis method to construct inexpensive surrogates for parametrized microscale problems; the method is specifically well-suited for multiscale simulations since the coupled simulation is decoupled into two independent problems: (1) solving the microscopic problem for different (loading or material) parameters and learning a surrogate model from the data; and (2) solving the macroscopic problem with the learned material model. The proposed method has three key features. First, the microscopic stress field can be fully recovered, which is useful for instance for revealing local stress concentrations inside the microstructure. Second, the method is able to accurately predict the stress field for a wide range of material parameters; furthermore, the derivatives of the effective stress with respect to the material parameters are available and can be readily utilized in solving optimization problems. Finally, it is more data efficient, i.e. requiring less training data, as compared to directly performing a regression on the effective stress. To construct the surrogate model, first, a proper orthogonal decomposition is performed on precomputed microscopic stress field snapshots to find a reduced basis for the stress. Second, a regression is employed to infer the coefficients of the reduced basis approximation for any arbitrary parameter value, thus enabling a rapid online evaluation of the microscopic stress. Equipped with the stress field, the effective stress and its partial derivatives can then be derived analytically. For the microstructures in the two test problems considered, the mean approximation error of the effective stress is as low as 0.1% despite using a relatively small training dataset. Embedded into the macroscopic problem, the reduced order model leads to an online computational speed up of approximately three orders of magnitude while maintaining a high accuracy as compared to the FE\(^2\) solver.

MSC:

74M25 Micromechanics of solids
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids

References:

[1] Geers, M. G.D.; Kouznetsova, V. G.; Brekelmans, W. A.M., Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math., 234, 7, 2175-2182 (2010), URL https://linkinghub.elsevier.com/retrieve/pii/S0377042709005536 · Zbl 1402.74107
[2] Geers, M. G.D.; Yvonnet, J., Multiscale modeling of microstructure-property relations, MRS Bull., 41, 08, 610-616 (2016), URL http://link.springer.com/10.1557/mrs.2016.165
[3] Matouš, K.; Geers, M. G.D.; Kouznetsova, V. G.; Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys. (2017)
[4] Feyel, F., Multiscale FE2 elastoviscoplastic analysis of composite structures, Comput. Mater. Sci., 16, 1-4, 344-354 (1999)
[5] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Engrg., 157, 1-2, 69-94 (1998) · Zbl 0954.74079
[6] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[7] Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R., A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics, Comput. Methods Appl. Mech. Engrg., 379, Article 113741 pp. (2021), URL https://linkinghub.elsevier.com/retrieve/pii/S0045782521000773 · Zbl 1506.74476
[8] Weinan, E.; Yu, B., The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat., 6, 1, 1-12 (2018), URL http://link.springer.com/10.1007/s40304-018-0127-z · Zbl 1392.35306
[9] Samaniego, E.; Anitescu, C.; Goswami, S.; Nguyen-Thanh, V. M.; Guo, H.; Hamdia, K.; Zhuang, X.; Rabczuk, T., An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Comput. Methods Appl. Mech. Engrg., 362, Article 112790 pp. (2020) · Zbl 1439.74466
[10] Kouznetsova, V. G.; Brekelmans, W. A.M.; Baaijens, F. P.T., Approach to micro-macro modeling of heterogeneous materials, Comput. Mech., 27, 1, 37-48 (2001) · Zbl 1005.74018
[11] Rokoš, O.; Ameen, M. M.; Peerlings, R. H.J.; Geers, M. G.D., Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields, J. Mech. Phys. Solids, 123, 119-137 (2019) · Zbl 1474.74087
[12] Nguyen, V. P.; Lloberas-Valls, O.; Stroeven, M.; Sluys, L. J., Computational homogenization for multiscale crack modeling. Implementational and computational aspects, Internat. J. Numer. Methods Engrg., 89, 2, 192-226 (2012) · Zbl 1242.74085
[13] Xia, L.; Breitkopf, P., Recent advances on topology optimization of multiscale nonlinear structures, Arch. Comput. Methods Eng., 24, 2, 227-249 (2017) · Zbl 1364.74086
[14] Saeb, S.; Steinmann, P.; Javili, A., Aspects of computational homogenization at finite deformations: A unifying review from Reuss’ to Voigt’s Bound, Appl. Mech. Rev., 68, 5 (2016)
[15] Miehe, C.; Koch, A., Computational micro-to-macro transitions of discretized microstructures undergoing small strains, Arch. Appl. Mech., 72, 4-5, 300-317 (2002) · Zbl 1032.74010
[16] Miehe, C., Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy, Comput. Methods Appl. Mech. Engrg., 192, 5-6, 559-591 (2003) · Zbl 1091.74530
[17] Temizer, I.; Wriggers, P., On the computation of the macroscopic tangent for multiscale volumetric homogenization problems, Comput. Methods Appl. Mech. Engrg., 198, 3-4, 495-510 (2008) · Zbl 1228.74066
[18] Okada, J. I.; Washio, T.; Hisada, T., Study of efficient homogenization algorithms for nonlinear problems: Approximation of a homogenized tangent stiffness to reduce computational cost, Comput. Mech., 46, 2, 247-258 (2010) · Zbl 1398.74261
[19] Kirchdoerfer, T.; Ortiz, M., Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg., 304, 81-101 (2016) · Zbl 1425.74503
[20] Kirchdoerfer, T.; Ortiz, M., Data driven computing with noisy material data sets, Comput. Methods Appl. Mech. Engrg., 326, 622-641 (2017) · Zbl 1464.62282
[21] Eggersmann, R.; Kirchdoerfer, T.; Reese, S.; Stainier, L.; Ortiz, M., Model-free data-driven inelasticity, Comput. Methods Appl. Mech. Engrg., 350, 81-99 (2019) · Zbl 1441.74048
[22] Karapiperis, K.; Stainier, L.; Ortiz, M.; Andrade, J. E., Data-driven multiscale modeling in mechanics, J. Mech. Phys. Solids, 147, July 2020, Article 104239 pp. (2021)
[23] Huang, D. Z.; Xu, K.; Farhat, C.; Darve, E., Learning constitutive relations from indirect observations using deep neural networks, J. Comput. Phys., 416, Article 109491 pp. (2020), URL https://linkinghub.elsevier.com/retrieve/pii/S0021999120302655 · Zbl 1437.65192
[24] Xu, K.; Huang, D. Z.; Darve, E., Learning constitutive relations using symmetric positive definite neural networks, J. Comput. Phys., 428, Article 110072 pp. (2021), URL https://linkinghub.elsevier.com/retrieve/pii/S0021999120308469 · Zbl 07511428
[25] Ghaboussi, J.; Garrett, J.; Wu, X., Knowledge-based modeling of material behavior with neural networks, J. Eng. Mech., 117, 132-153 (1991)
[26] Ghaboussi, J.; Pecknold, D. A.; Zhang, M.; Haj-Ali, R. M., Autoprogressive training of neural network constitutive models, Internat. J. Numer. Methods Engrg., 42, 1, 105-126 (1998) · Zbl 0915.73075
[27] Ghavamian, F.; Simone, A., Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network, Comput. Methods Appl. Mech. Engrg., 357, Article 112594 pp. (2019) · Zbl 1442.65142
[28] Wu, L.; Nguyen, V. D.; Kilingar, N. G.; Noels, L., A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths, Comput. Methods Appl. Mech. Engrg., 369, Article 113234 pp. (2020) · Zbl 1506.74453
[29] Logarzo, H. J.; Capuano, G.; Rimoli, J. J., Smart constitutive laws: Inelastic homogenization through machine learning, Comput. Methods Appl. Mech. Engrg., 373, Article 113482 pp. (2021) · Zbl 1506.74336
[30] Mozaffar, M.; Bostanabad, R.; Chen, W.; Ehmann, K.; Cao, J.; Bessa, M. A., Deep learning predicts path-dependent plasticity, Proc. Natl. Acad. Sci., 116, 52, 26414-26420 (2019)
[31] Linka, K.; Hillgärtner, M.; Abdolazizi, K. P.; Aydin, R. C.; Itskov, M.; Cyron, C. J., Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning, J. Comput. Phys., 429, Article 110010 pp. (2021) · Zbl 07500745
[32] Masi, F.; Stefanou, I.; Vannucci, P.; Maffi-Berthier, V., Thermodynamics-based artificial neural networks for constitutive modeling, J. Mech. Phys. Solids, 147, October 2020, Article 104277 pp. (2021), URL https://linkinghub.elsevier.com/retrieve/pii/S0022509620304841
[33] Le, B. A.; Yvonnet, J.; He, Q. C., Computational homogenization of nonlinear elastic materials using neural networks, Internat. J. Numer. Methods Engrg., 104, 12, 1061-1084 (2015) · Zbl 1352.74266
[34] Noll, W.; Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, The Foundations of Mechanics and Thermodynamics, 145-156 (1974)
[35] Dvorak, G. J., Transformation field analysis of inelastic composite materials, Proc. R. Soc. A, 437, 1900, 311-327 (1992) · Zbl 0748.73007
[36] Michel, J. C.; Suquet, P., Nonuniform transformation field analysis, Int. J. Solids Struct., 40, 25, 6937-6955 (2003), URL https://linkinghub.elsevier.com/retrieve/pii/S0020768303003469 · Zbl 1057.74031
[37] Fritzen, F.; Leuschner, M., Reduced basis hybrid computational homogenization based on a mixed incremental formulation, Comput. Methods Appl. Mech. Engrg., 260, 143-154 (2013) · Zbl 1286.74081
[38] Fritzen, F.; Marfia, S.; Sepe, V., Reduced order modeling in nonlinear homogenization: A comparative study, Comput. Struct., 157, 114-131 (2015)
[39] Liu, Z.; Bessa, M. A.; Liu, W. K., Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 306, 319-341 (2016) · Zbl 1436.74070
[40] Yu, C.; Kafka, O. L.; Liu, W. K., Self-consistent clustering analysis for multiscale modeling at finite strains, Comput. Methods Appl. Mech. Engrg., 349, 339-359 (2019) · Zbl 1441.74309
[41] Wulfinghoff, S.; Cavaliere, F.; Reese, S., Model order reduction of nonlinear homogenization problems using a Hashin-Shtrikman type finite element method, Comput. Methods Appl. Mech. Engrg., 330, 149-179 (2018) · Zbl 1439.74327
[42] Chinesta, F.; Keunings, R.; Leygue, A., (The Proper Generalized Decomposition for Advanced Numerical Simulations. The Proper Generalized Decomposition for Advanced Numerical Simulations, SpringerBriefs in Applied Sciences and Technology (2014), Springer International Publishing: Springer International Publishing Cham), 25-46 · Zbl 1287.65001
[43] Ladevèze, P.; Passieux, J. C.; Néron, D., The LATIN multiscale computational method and the Proper Generalized Decomposition, Comput. Methods Appl. Mech. Engrg., 199, 21-22, 1287-1296 (2010) · Zbl 1227.74111
[44] Niroomandi, S.; González, D.; Alfaro, I.; Bordeu, F.; Leygue, A.; Cueto, E.; Chinesta, F., Real-time simulation of biological soft tissues: A PGD approach, Int. J. Numer. Methods Biomed. Eng., 29, 5, 586-600 (2013)
[45] Prud’homme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, Trans. ASME, J. Fluids Eng., 124, 1, 70-80 (2002)
[46] Quarteroni, A.; Manzoni, A.; Negri, F., (Reduced Basis Methods for Partial Differential Equations. Reduced Basis Methods for Partial Differential Equations, UNITEXT, vol. 92 (2016), Springer International Publishing: Springer International Publishing Cham), 1-263 · Zbl 1337.65113
[47] Hesthaven, J. S.; Rozza, G.; Stamm, B., (Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs in Mathematics (2016), Springer International Publishing: Springer International Publishing Cham), 1-131 · Zbl 1329.65203
[48] Carlberg, K. T.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Internat. J. Numer. Methods Engrg., 86, 2, 155-181 (2011) · Zbl 1235.74351
[49] Radermacher, A.; Reese, S., A comparison of projection-based model reduction concepts in the context of nonlinear biomechanics, Arch. Appl. Mech., 83, 8, 1193-1213 (2013) · Zbl 1349.74262
[50] Soldner, D.; Brands, B.; Zabihyan, R.; Steinmann, P.; Mergheim, J., A numerical study of different projection-based model reduction techniques applied to computational homogenisation, Comput. Mech., 60, 4, 613-625 (2017) · Zbl 1386.74142
[51] Ghavamian, F.; Tiso, P.; Simone, A., POD-DEIM model order reduction for strain softening viscoplasticity, Comput. Methods Appl. Mech. Engrg., 317, 458-479 (2017) · Zbl 1439.74073
[52] Ryckelynck, D., Hyper-reduction of mechanical models involving internal variables, Internat. J. Numer. Methods Engrg., 77, 1, 75-89 (2009) · Zbl 1195.74299
[53] Hernández, J. A.; Oliver, J.; Huespe, A. E.; Caicedo, M. A.; Cante, J. C., High-performance model reduction techniques in computational multiscale homogenization, Comput. Methods Appl. Mech. Engrg., 276, 149-189 (2014) · Zbl 1423.74785
[54] Guo, M.; Hesthaven, J. S., Reduced order modeling for nonlinear structural analysis using Gaussian process regression, Comput. Methods Appl. Mech. Engrg., 341, 807-826 (2018) · Zbl 1440.65206
[55] Hesthaven, J. S.; Ubbiali, S., Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55-78 (2018) · Zbl 1398.65330
[56] Kast, M.; Guo, M.; Hesthaven, J. S., A non-intrusive multifidelity method for the reduced order modeling of nonlinear problems, Comput. Methods Appl. Mech. Engrg., 364, Article 112947 pp. (2020) · Zbl 1442.65094
[57] Swischuk, R.; Mainini, L.; Peherstorfer, B.; Willcox, K., Projection-based model reduction: Formulations for physics-based machine learning, Comput. & Fluids, 179, 704-717 (2019) · Zbl 1411.65061
[58] Guénot, M.; Lepot, I.; Sainvitu, C.; Goblet, J.; Coelho, R. F., Adaptive sampling strategies for non-intrusive POD-based surrogates, Eng. Comput., 30, 4, 521-547 (2013)
[59] Yang, M.; Xiao, Z., POD-based surrogate modeling of transitional flows using an adaptive sampling in Gaussian process, Int. J. Heat Fluid Flow, 84, December 2019, Article 108596 pp. (2020)
[60] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 9, 667-672 (2004) · Zbl 1061.65118
[61] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[62] Yvonnet, J.; He, Q. C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223, 1, 341-368 (2007) · Zbl 1163.74048
[63] Abueidda, D. W.; Koric, S.; Sobh, N. A.; Sehitoglu, H., Deep learning for plasticity and thermo-viscoplasticity, Int. J. Plast., 136, August 2020, Article 102852 pp. (2021)
[64] Chakir, R.; Hammond, J. K., A non-intrusive reduced basis method for elastoplasticity problems in geotechnics, J. Comput. Appl. Math., 337, 1-17 (2018) · Zbl 1524.74412
[65] Kunc, O.; Fritzen, F., Finite strain homogenization using a reduced basis and efficient sampling, Math. Comput. Appl., 24, 2, 56 (2019)
[66] Bērzinš, A.; Helmig, J.; Key, F.; Elgeti, S., Standardized non-intrusive reduced order modeling using different regression models with application to complex flow problems (2020), arXiv
[67] Liu, H.; Ong, Y. S.; Cai, J., A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design, Struct. Multidiscip. Optim., 57, 1, 393-416 (2018)
[68] Rasmussen, C. E., Gaussian Processes in machine learning, (Bousquet, O.; von Luxburg, U.; Rätsch, G., Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures (2004), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 63-71 · Zbl 1120.68436
[69] Huang, D.; Fuhg, J. N.; Weißenfels, C.; Wriggers, P., A machine learning based plasticity model using proper orthogonal decomposition, Comput. Methods Appl. Mech. Engrg., 365, Article 113008 pp. (2020) · Zbl 1442.74042
[70] Wu, P.; Sun, J.; Chang, X.; Zhang, W.; Arcucci, R.; Guo, Y.; Pain, C. C., Data-driven reduced order model with temporal convolutional neural network, Comput. Methods Appl. Mech. Engrg., 360, Article 112766 pp. (2020) · Zbl 1441.76101
[71] Permann, C. J.; Gaston, D. R.; Andrš, D.; Carlsen, R. W.; Kong, F.; Lindsay, A. D.; Miller, J. M.; Peterson, J. W.; Slaughter, A. E.; Stogner, R. H.; Martineau, R. C., MOOSE: Enabling massively parallel multiphysics simulation, SoftwareX, 11, Article 100430 pp. (2020)
[72] Bessa, M. A.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D. W.; Brinson, C.; Chen, W.; Liu, W. K., A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320, 633-667 (2017) · Zbl 1439.74014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.