×

Koopman wavefunctions and classical states in hybrid quantum-classical dynamics. (English) Zbl 1506.37113

The authors study the interaction dynamics for systems with classical and quantum degrees of freedom. The second section is a large and excellent review of the Koopman-van Hove (KvH) approach of classical mechanics. This classical KvH theory is extended in Section 3 in order to include the coupling to a quantum system. The variational structure of the quantum-classical wave equation is studied in Section 4 upon using the exact factorization of the hybrid wavefunction. Section 5 provides the formulation of the closure model ensuring that the classical density retains its initial sign. A conclusive discussion is the content of the last section which ends with a list of open problems.

MSC:

37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
81Q80 Special quantum systems, such as solvable systems
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
81S08 Canonical quantization
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory

References:

[1] A. Abedi, N. T. Maitra and E. K. U Gross, Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction, J. Chem. Phys., 137 (2012).
[2] F. Agostini, S. Caprara and G. Ciccotti, Do we have a consistent non-adiabatic quantum-classical mechanics?, Europhys. Lett. EPL, 78 (2007), 6 pp. · Zbl 1244.81002
[3] I. V. Aleksandrov, The statistical dynamics of a system consisting of a classical and a quantum subsystem, Z. Naturforsch. A., 36, 902-908 (1981) · doi:10.1515/zna-1981-0819
[4] A. V. Akimov, R. Long and O. V. Prezhdo, Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics, J. Chem. Phys., 140 (2014).
[5] C. Barceló, R. Carballo-Rubio, L. J. Garay, and R. Gómez-Escalante, Hybrid classical-quantum formulations ask for hybrid notions, Phys. Rev. A, 86 (2012).
[6] A. D. Bermúdez Manjarres, Projective representation of the Galilei group for classical and quantum-classical systems, J. Phys. A, 54 (2021), 9 pp. · Zbl 1473.83085
[7] M. V. Berry, True quantum chaos? An instructive example, in New Trends in Nuclear Collective Dynamics, Springer Proceedings in Physics, 58, Springer, Berlin, Heidelberg, 1992,183-186.
[8] G. Bhole, J. A. Jones, C. Marletto and V. Vedral, Witnesses of non-classicality for simulated hybrid quantum systems, J. Phys. Comm., 4 (2020).
[9] D. Bondar, R. Cabrera, R. R. Lompay, M. Y. Ivanov, and H. A. Rabitz, Operational dynamic modeling transcending quantum and classical mechanics, Phys. Rev. Lett., 109 (2012).
[10] D. I. Bondar, F. Gay-Balmaz and C. Tronci, Koopman wavefunctions and classical-quantum correlation dynamics, Proc. A, 475 (2019), 18 pp. · Zbl 1472.81012
[11] W. Boucher; J. Traschen, Semiclassical physics and quantum fluctuations, Phys. Rev. D, 37, 3522-3532 (1988) · doi:10.1103/PhysRevD.37.3522
[12] M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism, Chaos, 22 (2012), 33 pp. · Zbl 1319.37013
[13] S. M. Carroll and J. Lodman, Energy non-conservation in quantum mechanics, Found. Phys., 51 (2021), 15 pp. · Zbl 07423818
[14] H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations, Mosc. Math. J., 3 (2003), 833-867, 1197-1198. · Zbl 1156.37314
[15] D. Chruściński; A. Kossakowski; G. Marmo; E. C. G. Sudarshan, Dynamics of interacting classical and quantum systems, Open. Syst. Inf. Dyn., 18, 339-351 (2011) · Zbl 1243.82043 · doi:10.1142/S1230161211000236
[16] G. Della Riccia; N. Wiener, Wave mechanics in classical phase space, Brownian motion, and quantum theory, J. Mathematical Phys., 7, 1372-1383 (1966) · doi:10.1063/1.1705047
[17] L. Diósi; J. J. Halliwell, Coupling classical and quantum variables using continuous quantum measurement theory, Phys. Rev. Lett., 81, 2846-2849 (1998) · Zbl 0947.81012 · doi:10.1103/PhysRevLett.81.2846
[18] F. Faure, Prequantum chaos: Resonances of the prequantum cat map, J. Mod. Dyn., 1, 255-285 (2007) · Zbl 1145.81034 · doi:10.3934/jmd.2007.1.255
[19] R. P. Feynman, Negative probability, in Quantum Implications, Routledge & Kegan Paul, London, 1987,235-248.
[20] M. S. Foskett; D. D. Holm; C. Tronci, Geometry of nonadiabatic quantum hydrodynamics, Acta Appl. Math., 162, 63-103 (2019) · Zbl 1421.35274 · doi:10.1007/s10440-019-00257-1
[21] M. S. Foskett and C. Tronci, Holonomy and vortex structures in quantum hydrodynamics, in Hamiltonian Systems: Dynamics, Analysis, Applications, Math. Sci. Res. Inst. Pub., 72, Cambridge University Press, 2022.
[22] F. Gay-Balmaz; T. S. Ratiu, The geometric structure of complex fluids, Adv. in Appl. Math., 42, 176-275 (2009) · Zbl 1161.37052 · doi:10.1016/j.aam.2008.06.002
[23] F. Gay-Balmaz and C. Tronci, Evolution of hybrid quantum-classical wavefunctions, Phys. D, 440 (2022). · Zbl 1485.76088
[24] F. Gay-Balmaz and C. Tronci, From quantum hydrodynamics to Koopman wavefunctions I, in Geometric Science of Information, Lecture Notes in Comput. Sci., 12829, Springer, Cham, 2021,302-310. · Zbl 1485.76088
[25] F. Gay-Balmaz; C. Tronci, Madelung transform and probability densities in hybrid quantum-classical dynamics, Nonlinearity, 33, 5383-5424 (2020) · Zbl 1454.35310 · doi:10.1088/1361-6544/aba233
[26] F. Gay-Balmaz and C. Tronci, Vlasov moment flows and geodesics on the Jacobi group, J. Math. Phys., 53 (2012), 36 pp. · Zbl 1287.37045
[27] V. I. Gerasimenko, Dynamical equations of quantum-classical systems, Teoret. Mat. Fiz., 50, 77-87 (1982)
[28] D. Giannakis, A. Ourmazd, P. Pfeffer, J. Schumacher, and J. Slawinska, Embedding classical dynamics in a quantum computer, Phys. Rev. A, 105 (2022), 47 pp.
[29] V. Guillemin; S. Sternberg, The moment map and collective motion, Ann. Physics, 127, 220-253 (1980) · Zbl 0453.58015 · doi:10.1016/0003-4916(80)90155-4
[30] M. J. W. Hall and M. Reginatto, Ensembles on Configuration Space. Classical, Quantum, and Beyond, Fundamental Theories of Physics, 184, Springer, Cham, 2016. · Zbl 1341.81006
[31] D. D. Holm, Euler-Poincaré dynamics of perfect complex fluids, in Geometry, Mechanics, and Dynamics, Springer, New York, 2002,113-167. · Zbl 1114.37308
[32] D. D. Holm; J. E. Marsden; T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137, 1-81 (1998) · Zbl 0951.37020 · doi:10.1006/aima.1998.1721
[33] D. D. Holm, J. I. Rawlinson and C. Tronci, The bohmion method in nonadiabatic quantum hydrodynamics, J. Phys. A, 54 (2021), 24 pp. · Zbl 1507.81042
[34] J. Hurst, P.-A. Hervieux and G. Manfredi, Phase-space methods for the spin dynamics in condensed matter systems, Phil. Trans. Roy. Soc. A, 375 (2017), 14 pp. · Zbl 1404.81159
[35] R. S. Ismagilov, M. Losik and P. Michor, A 2-cocycle on a symplectomorphism group, Mosc. Math. J., 6 (2006), 307-315,407. · Zbl 1132.53043
[36] H.-R. Jauslin and D. Sugny, Dynamics of mixed quantum-classical systems, geometric quantization and coherent states, in Mathematical Horizons for Quantum Physics, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 20, World Sci. Publ., Hackensack, NJ, 2010, 65-96.
[37] I. Joseph, Koopman-von Neumann approach to quantum simulation of nonlinear classical dynamics, Phys. Rev. Res., 2 (2020).
[38] R. Kapral, Progress in the theory of mixed quantum-classical dynamics, Ann. Rev. Phys. Chem., 57, 129-157 (2006) · doi:10.1146/annurev.physchem.57.032905.104702
[39] B. Khesin; G. Misiołek; K. Modin, Geometry of the Madelung transform, Arch. Ration. Mech. Anal., 234, 549-573 (2019) · Zbl 1425.53107 · doi:10.1007/s00205-019-01397-2
[40] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Nat. Acad. Sci., 17, 315-318 (1931) · JFM 57.1010.02 · doi:10.1073/pnas.17.5.31
[41] B. Kostant, Line bundles and the prequantized Schrödinger equation, in Colloquium on Group Theoretical Methods in Physics, Centre de Physique Théorique, Marseille, 1972.
[42] B. Kostant, Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87-208. · Zbl 0223.53028
[43] E. Madelung, Quantentheorie in hydrodynamischer Form, Z. Phys., 40, 322-326 (1927) · JFM 52.0969.06 · doi:10.1007/BF01400372
[44] J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004. · Zbl 1241.53069
[45] A. Peres and D. R. Terno, Hybrid quantum-classical dynamics, Phys. Rev. A, 63 (2001).
[46] O. V. Prezhdo; V. V. Kisil, Mixing quantum and classical mechanics, Phys. Rev. A (3), 56, 162-175 (1997) · doi:10.1103/PhysRevA.56.162
[47] C. Rangan and A. M. Bloch, Control of finite-dimensional quantum systems: Application to a spin-\( \frac12\) particle coupled with a finite quantum harmonic oscillator, J. Math. Phys., 46 (2005), 9 pp. · Zbl 1076.81010
[48] L. L. Salcedo, Absence of classical and quantum mixing, Phys. Rev. A, 54, 3657-3660 (1996) · doi:10.1103/PhysRevA.54.3657
[49] J.-M. Souriau, Quantification géométrique, Comm. Math. Phys., 1, 374-398 (1966) · Zbl 1148.81307
[50] E. C. G. Sudarshan, Interaction between classical and quantum systems and the measurement of quantum observables, Pramana, 6, 117-126 (1976) · doi:10.1007/BF02847120
[51] I. Tavernelli, B. F. E. Curchod and U. Rothlisberger, Mixed quantum-classical dynamics with time-dependent external fields: A time-dependent density-functional-theory approach, Phys. Rev A, 81 (2010).
[52] G. ’t Hooft, Quantum-mechanical behaviour in a deterministic model, Found. Phys. Lett., 10, 105-111 (1997) · doi:10.1007/BF02764232
[53] D. R. Terno, Inconsistency of quantum-classical dynamics, and what it implies, Found. Phys., 36, 102-111 (2006) · Zbl 1105.81004 · doi:10.1007/s10701-005-9007-y
[54] C. Tronci, Hybrid models for perfect complex fluids with multipolar interactions, J. Geom. Mech., 4, 333-363 (2012) · Zbl 1295.76005 · doi:10.3934/jgm.2012.4.333
[55] C. Tronci, Momentum maps for mixed states in quantum and classical mechanics, J. Geom. Mech., 11, 639-656 (2019) · Zbl 1448.81070 · doi:10.3934/jgm.2019032
[56] C. Tronci and F. Gay-Balmaz, From quantum hydrodynamics to Koopman wavefunctions II, in Geometric Science of Information, Lecture Notes in Comput. Sci., 12829, Springer, Cham, 2021,311-319. · Zbl 1485.76089
[57] C. Tronci and I. Joseph, Koopman wavefunctions and Clebsch variables in Vlasov-Maxwell kinetic theory, J. Plasma Phys., 87 (2021).
[58] J. C. Tully, Mixed quantum-classical dynamics, Faraday Discuss., 110, 407-419 (1998) · doi:10.1039/A801824C
[59] L. van Hove, On certain unitary representations of an infinite group of transformations, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. · Zbl 0989.81051
[60] A. Widom; Y. Srivastava, Lagrangian formulation of Bohr’s measurement theory, Nuovo Cimento B (11), 107, 71-75 (1992) · doi:10.1007/BF02726886
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.