×

On sufficient density conditions for lattice orbits of relative discrete series. (English) Zbl 1506.22009

Let \(G\) be a second-countable unimodular locally compact group and let \((\pi, \mathcal{H}_\pi)\) be an irreducible projective unitary representation of \(G\). The paper studies sufficient conditions for the existence of so-called frames and Riesz sequences, where for a lattice \(\Gamma \leq G\), the \(\Gamma\)-orbit \(\pi(\Gamma)g\) of \(g \in \mathcal{H}_\pi\) is said to be a frame if \[ A \|f\|_{\mathcal{H}_\pi}^2 \leq \sum_{\gamma \in \Gamma} |\langle f, \pi(\gamma)g\rangle|^2 \leq B \|f\|_{\mathcal{H}_\pi}^2, \qquad \forall f \in \mathcal{H}_\pi \] for suitable constants \(A,B > 0\). The orbit \(\pi(\Gamma)g\) is called a Riesz sequence if for some \(A,B > 0\): \[ A \|c\|_{\ell^2}^2 \leq \| \sum_{\gamma} c_\gamma \pi(\gamma)g\|_{\mathcal{H}_\pi}^2 \leq B \|c\|_{\ell^2}^2, \qquad \forall c \in \ell^2(\Gamma). \] Suppose that \(\pi\) is a discrete series representation of formal dimension \(d_\pi > 0\) with trivial projective kernel. Assume further that any conjugacy class in \(G\) is pre-compact in \(G\) and that either \(G\) is locally connected or \(\Gamma\) is co-compact in \(G\). The main result of the paper is that under these assumptions, there exists a \(\Gamma\)-orbit \(\pi(\Gamma)g\) in \(\mathcal{H}_\pi\) which is a frame if \(\mathrm{vol}(G/\Gamma)d_\pi \leq 1\), and there exists an orbit \(\pi(\Gamma)g\) which is a Riesz sequence if \(\mathrm{vol}(G/\Gamma)d_\pi \geq 1\).
Assuming that \(G\) is \(1\)-connected, the condition that any conjugacy class in \(G\) is pre-compact is in particular satisfied if \(G\) is an exponential solvable Lie group, a complex-analytic Lie group or a semisimple Lie group without compact factors.

MSC:

22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
42C30 Completeness of sets of functions in nontrigonometric harmonic analysis
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] Bader, U.; Caprace, P-E; Gelander, T.; Mozes, S., Lattices in amenable groups, Fundam. Math., 246, 3, 217-255 (2019) · Zbl 1423.22012 · doi:10.4064/fm572-9-2018
[2] Bekka, B., Square integrable representations, von Neumann algebras and an application to Gabor analysis, J. Fourier Anal. Appl., 10, 4, 325-349 (2004) · Zbl 1064.46058 · doi:10.1007/s00041-004-3036-3
[3] Bekka, B.; Ludwig, J., Complemented *-primitive ideals in \(L^1\)-algebras of exponential Lie groups and of motion groups, Math. Z., 204, 4, 515-526 (1990) · Zbl 0682.43006 · doi:10.1007/BF02570890
[4] Diatta, A.; Foreman, B., Lattices in contact Lie groups and 5-dimensional contact solvmanifolds, Kodai Math. J., 38, 1, 228-248 (2015) · Zbl 1321.53096 · doi:10.2996/kmj/1426684452
[5] Duflo, M.; Rais, M., Sur l’analyse harmonique sur les groupes de Lie resolubles, Ann. Sci. Éc. Norm. Supér., 4, 9, 107-144 (1976) · Zbl 0324.43011 · doi:10.24033/asens.1306
[6] Enstad, U., The density theorem for projective representations via twisted group von Neumann algebras, J. Math. Anal. Appl., 511, 2 (2022) · Zbl 1494.46056 · doi:10.1016/j.jmaa.2022.126072
[7] Greenleaf, F. P., Moskowitz, M., Preiss-Rothschild, L.: Automorphisms, orbits, and homogeneous spaces of non-connected Lie groups. Math. Ann. 212, 145-155 (1974/1975) · Zbl 0278.22008
[8] Greenleaf, FP; Moskowitz, M.; Rothschild, LP, Unbounded conjugacy classes in Lie groups and location of central measures, Acta Math., 132, 225-243 (1974) · Zbl 0281.22010 · doi:10.1007/BF02392116
[9] Greenleaf, FP; Moskowitz, M.; Rothschild, LP, Compactness of certain homogeneous spaces of finite volume, Amer. J. Math., 97, 248-259 (1975) · Zbl 0296.43009 · doi:10.2307/2373670
[10] Hilgert, J.; Neeb, K-H, Structure and Geometry of Lie Groups (2012), Berlin: Springer, Berlin · Zbl 1229.22008 · doi:10.1007/978-0-387-84794-8
[11] Kleppner, A., The structure of some induced representations, Duke Math. J., 29, 555-572 (1962) · Zbl 0113.02506 · doi:10.1215/S0012-7094-62-02956-3
[12] Moscovici, H.; Verona, A., Quantization and projective representations of solvable Lie groups, Trans. Amer. Math. Soc., 246, 173-192 (1978) · Zbl 0417.22006 · doi:10.1090/S0002-9947-1978-0515535-3
[13] Moskowitz, M., Some remarks on automorphisms of bounded displacement and bounded cocycles, Monatsh. Math., 85, 323-336 (1978) · Zbl 0391.22004 · doi:10.1007/BF01305961
[14] Mostow, G.D.: Homogeneous spaces with finite invariant measure. Ann. of Math. (2) 75, 17-37 (1962) · Zbl 0115.25702
[15] Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer, New York-Heidelberg (1972) · Zbl 0254.22005
[16] Romero, J.L., Van Velthoven, J.T.: The density theorem for discrete series representations restricted to lattices. Expo. Math., to appear · Zbl 1501.22003
[17] Rosenberg, J., Square-integrable factor representations of locally compact groups, Trans. Amer. Math. Soc., 237, 1-33 (1978) · Zbl 0412.22003 · doi:10.1090/S0002-9947-1978-0486292-4
[18] Sit, K-YC, On bounded elements of linear algebraic groups, Trans. Amer. Math. Soc., 209, 185-198 (1975) · Zbl 0273.22005 · doi:10.1090/S0002-9947-1975-0379750-1
[19] Sit, K-YC, Compactness of certain homogeneous spaces of locally compact groups, Proc. Amer. Math. Soc., 55, 170-174 (1976) · Zbl 0319.22006 · doi:10.1090/S0002-9939-1976-0425004-0
[20] Sund, T., Multiplier representations of exponential Lie groups, Math. Ann., 232, 287-290 (1978) · Zbl 0374.22009 · doi:10.1007/BF01351433
[21] Tits, J., Automorphismes à deplacement borne des groupes de Lie, Topology, 3, 97-107 (1964) · Zbl 0131.03101 · doi:10.1016/0040-9383(64)90007-2
[22] Varadarajan, VS, Geometry of Quantum Theory (1985), New York: Springer, New York · Zbl 0581.46061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.