×

Cardinality of product sets in torsion-free groups and applications in group algebras. (English) Zbl 1506.20068

Summary: Let \(G\) be a unique product group, i.e. for any two finite subsets \(A,B\) of \(G\), there exists \(x \in G\) which can be uniquely expressed as a product of an element of \(A\) and an element of \(B\). We prove that if \(C\) is a finite subset of \(G\) containing the identity element such that \(\langle C \rangle\) is not abelian, then, for all subsets \(B\) of \(G\) with \(|B| \geq 7, |BC| \geq |B|+|C|+2\). Also, we prove that if \(C\) is a finite subset containing the identity element of a torsion-free group \(G\) such that \(|C|=3\) and \(\langle C \rangle\) is not abelian, then for all subsets \(B\) of \(G\) with \(|B| \geq 7, |BC| \geq |B|+5\). Moreover, if \(\langle C \rangle\) is not isomorphic to the Klein bottle group, i.e. the group with the presentation \(\langle x,y\mid xyx=y \rangle\), then for all subsets \(B\) of \(G\) with \(|B| \geq 5, |BC| \geq |B|+5\). The support of an element \(\alpha= \sum_{x \in G} \alpha_xx\) in a group algebra \(\mathbb{F}[G] (\mathbb{F}\) is any field), denoted by \(\text{supp}(\alpha)\), is the set \(\{x\in G| \alpha_x \neq 0\}\). By the latter result, we prove that if \(\alpha \beta = 0\) for some nonzero \(\alpha, \beta \in \mathbb{F}[G]\) such that \(|\text{supp}(\alpha)|=3\), then \(|\text{supp}(\beta)|\geq 12\). Also, we prove that if \(\alpha\beta=1\) for some \(\alpha,\beta\in\mathbb{F}[G]\) such that \(|\text{supp}(\alpha)|=3\), then \(|\text{supp}(\beta)|\geq 10\). These results improve a part of results in [P. Schweitzer, J. Group Theory 16, No. 5, 667–693 (2013; Zbl 1292.20007); K. Dykema et al., Exp. Math. 24, No. 3, 326–338 (2015; Zbl 1403.20004)] to arbitrary fields, respectively.

MSC:

20E34 General structure theorems for groups
20F05 Generators, relations, and presentations of groups
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
11B13 Additive bases, including sumsets
11P70 Inverse problems of additive number theory, including sumsets
16S34 Group rings

Software:

GAP

References:

[1] A. Abdollahi and F. Jafari, Zero divisor and unit elements with supports of size 4 in group algebras of torsion-free groups, to appear in Comm. Algebra, https://arXiv:1709.08204 [math.GR]. · Zbl 1511.20016
[2] Abdollahi, A. and Taheri, Z., Zero divisors and units with small supports in group algebras of torsion-free groups, Comm. Algebra46(2) (2018) 887-925. · Zbl 1425.20005
[3] Bardakov, V. G. and Petukhova, M. S., On potential counterexamples to the problem of zero divisors, J. Math. Sci. (N.Y.)221(6) (2017) 778-797.
[4] Brailovsky, L. V. and Freiman, G. A., On a product of finite subsets in a torsion-free group, J. Algebra130 (1990) 462-476. · Zbl 0697.20019
[5] Brown, K. A., On zero divisors in group rings, Bull. London Math. Soc.8(3) (1976) 251-256. · Zbl 0336.16014
[6] Dykema, K., Heister, T. and Juschenko, K., Finitely presented groups related to Kaplansky’s direct finiteness conjecture, Exp. Math.24 (2015) 326-338. · Zbl 1403.20004
[7] Farkas, D. R. and Snider, R. L., \( K_0\) and Noetherian group rings, J. Algebra42(1) (1976) 192-198. · Zbl 0355.16004
[8] Formanek, E., The zero divisor question for supersolvable groups, Bull. Austral. Math. Soc.9 (1973) 69-71. · Zbl 0256.16005
[9] Freiman, G. A., Foundations of a Structural Theory of Set Addition, , Vol. 37 (American Mathematical Society, Providence, R. I., 1973). · Zbl 0271.10044
[10] Freiman, G. A., Inverse additive number theory, XI. Long arithmetic progressions in sets with small sumsets, Acta Arith.137 (2009) 325-331. · Zbl 1218.11095
[11] Gardner, R. J. and Gronchi, P., A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc.353 (2001) 3995-4024. · Zbl 0977.52019
[12] The GAP Group, GAP-Groups, Algorithms, and Programming, version 4.6.4, 2013. http://www.gap-system.org.
[13] Green, B. and Tao, T., Compressions, convex geometry and the Freiman-Bilu theorem, Quart. J. Math.57 (2006) 495-504. · Zbl 1160.11003
[14] Hamidoune, Y. O., An isoperimetric method in additive theory, J. Algebra179 (1996) 622-630. · Zbl 0842.20029
[15] Hamidoune, Y. O., Some additive applications of the isoperimetric approach, Ann. Inst. Fourier (Grenoble)58 (2008) 2007-2036. · Zbl 1173.05019
[16] Hamidoune, Y. O., The isoperimetric method, in Combinatorial Number Theory and Additive Group Theory, (Birkhäuser Verlag, Basel, 2009), pp. 241-252. · Zbl 1214.11018
[17] Hamidoune, Y. O., Lladó, A. S. and Serra, O., On subsets with small product in torsion-free groups, Combinatorica18(4) (1998) 529-540. · Zbl 0930.20034
[18] G. Higman, Units in group rings, D. Phil. Thesis, Oxford University (1940). · Zbl 0025.24302
[19] Higman, G., The units of group rings, Proc. London Math. Soc.46 (1940) 231-248. · Zbl 0025.24302
[20] Kaplansky, I., Problems in the theory of rings revisited, Amer. Math. Monthly77 (1970) 445-454. · Zbl 0208.29701
[21] Böröczky, K. J., Pálfy, P. P. and Serra, O., On the cardinality of sumsets in torsion-free groups, Bull. London Math. Soc.44 (2012) 1034-1041. · Zbl 1258.20025
[22] Kemperman, J. H. B., On complexes in a semigroup, Indag. Math.18 (1956) 247-254. · Zbl 0072.25605
[23] Kropholler, P. H., Linnell, P. A. and Moody, J. A., Applications of a new \(K\)-theoretic theorem to soluble group rings, Proc. Amer. Math. Soc.104(3) (1988) 675-684. · Zbl 0691.16013
[24] Lewin, J., A note on zero divisors in group-rings, Proc. Amer. Math. Soc.31 (1972) 357-359. · Zbl 0242.16006
[25] Lewin, J. and Lewin, T., An embedding of the group algebra of a torsion-free one relator group in a field, J. Algebra52 (1978) 39-74. · Zbl 0381.16006
[26] Matolcsi, M. and Ruzsa, I. Z., Sumsets and the convex hull, in eds. Chudnovsky, D. and Chudnovsky, G., Additive Number Theory: Festschrift in Honor of the Sixtieth Birthday of Melvyn B. Nathanson (Springer-Verlag, 2010), pp. 221-227. · Zbl 1300.11016
[27] Passman, D. S., Infinite Group Rings (Dekker, New York, 1971). · Zbl 0221.20042
[28] Promislow, S. D., A simple example of a torsion-free non unique product group, Bull. London Math. Soc.20 (1998) 302-304. · Zbl 0662.20022
[29] Rips, E. and Segev, Y., Torsion-free group without unique product property, J. Algebra108 (1987) 116-126. · Zbl 0614.20021
[30] Robinson, D. J. S., A Course in the Theory of Groups, 2nd edn. (Springer, 1996).
[31] Rudin, W. and Schneider, H., Idempotents in group rings, Duke Math. J.31 (1964) 585-602. · Zbl 0146.12003
[32] Ruzsa, I. Z., Sum of sets in several dimensions, Combinatorica14(4) (1994) 485-490. · Zbl 0815.11012
[33] Schweitzer, P., On zero divisors with small support in group rings of torsion-free groups, J. Group Theory16(5) (2013) 667-693. · Zbl 1292.20007
[34] Snider, R. L., The zero divisor conjecture for some solvable groups, Pacific J. Math.90(1) (1980) 191-196. · Zbl 0454.16005
[35] Strojnowsky, A., A note on u.p. groups, Comm. Algebra8(3) (1980) 231-234. · Zbl 0423.20005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.