×

Resolutions of length four which are differential graded algebras. (English) Zbl 1506.13023

Summary: Let \(P\) be a commutative Noetherian ring and \(F\) be a self-dual acyclic complex of finitely generated free \(P\)-modules. Assume that \(F\) has length four and \(F_0\) has rank one. We prove that \(F\) can be given the structure of a differential graded algebra with divided powers; furthermore, the multiplication on \(F\) exhibits Poincaré duality. This result is already known if \(P\) is a local Gorenstein ring and \(F\) is a minimal resolution. The purpose of the present paper is to remove the unnecessary hypotheses that \(P\) is local, \(P\) is Gorenstein, and \(F\) is minimal.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
16E45 Differential graded algebras and applications (associative algebraic aspects)

References:

[1] L. L. Avramov, “The Hopf algebra of a local ring”, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 253-277. · Zbl 0295.13005
[2] L. L. Avramov, “Small homomorphisms of local rings”, J. Algebra 50:2 (1978), 400-453. · Zbl 0395.13005 · doi:10.1016/0021-8693(78)90163-1
[3] L. L. Avramov, “Obstructions to the existence of multiplicative structures on minimal free resolutions”, Amer. J. Math. 103:1 (1981), 1-31. · Zbl 0447.13006 · doi:10.2307/2374187
[4] L. L. Avramov, “Homological asymptotics of modules over local rings”, pp. 33-62 in Commutative algebra (Berkeley, CA, 1987), edited by M. Hochster et al., Math. Sci. Res. Inst. Publ. 15, Springer, 1989. · Zbl 0788.18010
[5] L. L. Avramov, “A cohomological study of local rings of embedding codepth 3”, J. Pure Appl. Algebra 216:11 (2012), 2489-2506. · Zbl 1259.13010 · doi:10.1016/j.jpaa.2012.03.012
[6] L. L. Avramov, A. R. Kustin, and M. Miller, “Poincaré series of modules over local rings of small embedding codepth or small linking number”, J. Algebra 118:1 (1988), 162-204. · Zbl 0648.13008 · doi:10.1016/0021-8693(88)90056-7
[7] L. L. Avramov, S. B. Iyengar, S. Nasseh, and S. Sather-Wagstaff, “Homology over trivial extensions of commutative DG algebras”, Comm. Algebra 47:6 (2019), 2341-2356. · Zbl 1452.13019 · doi:10.1080/00927872.2018.1472272
[8] L. L. Avramov, S. Iyengar, S. Nasseh, and S. Sather-Wagstaff, “Persistence of homology over commutative Noetherian rings”, preprint, 2020. · Zbl 1452.13019
[9] D. Bayer and B. Sturmfels, “Cellular resolutions of monomial modules”, J. Reine Angew. Math. 502 (1998), 123-140. · Zbl 0909.13011 · doi:10.1515/crll.1998.083
[10] D. Bayer, I. Peeva, and B. Sturmfels, “Monomial resolutions”, Math. Res. Lett. 5:1-2 (1998), 31-46. · Zbl 0909.13010 · doi:10.4310/MRL.1998.v5.n1.a3
[11] D. A. Buchsbaum and D. Eisenbud, “What makes a complex exact?”, J. Algebra 25 (1973), 259-268. · Zbl 0264.13007 · doi:10.1016/0021-8693(73)90044-6
[12] D. A. Buchsbaum and D. Eisenbud, “Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension \(3\)”, Amer. J. Math. 99:3 (1977), 447-485. · Zbl 0373.13006 · doi:10.2307/2373926
[13] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer, 1995. · Zbl 0819.13001
[14] T. H. Gulliksen, “A proof of the existence of minimal \(R\)-algebra resolutions”, Acta Math. 120 (1968), 53-58. · Zbl 0157.34603 · doi:10.1007/BF02394606
[15] T. H. Gulliksen and G. Levin, Homology of local rings, Queen’s Paper in Pure and Applied Mathematics 20, Queen’s University, Kingston, Ont., 1969. · Zbl 0208.30304
[16] L. Katthän, “The structure of DGA resolutions of monomial ideals”, J. Pure Appl. Algebra 223:3 (2019), 1227-1245. · Zbl 1400.05287 · doi:10.1016/j.jpaa.2018.06.003
[17] A. R. Kustin, “Gorenstein algebras of codimension four and characteristic two”, Comm. Algebra 15:11 (1987), 2417-2429. · Zbl 0638.13018 · doi:10.1080/00927878708823544
[18] A. R. Kustin, “The deviation two Gorenstein rings of Huneke and Ulrich”, pp. 140-163 in Commutative algebra (Trieste, 1992), edited by A. Simis and G. Valla, World Sci. Publ., River Edge, NJ, 1994. · Zbl 0924.13015
[19] A. R. Kustin, “The minimal resolution of a codimension four almost complete intersection is a DG-algebra”, J. Algebra 168:2 (1994), 371-399. · Zbl 0811.13005 · doi:10.1006/jabr.1994.1235
[20] A. R. Kustin, “Huneke-Ulrich almost complete intersections of Cohen-Macaulay type two”, J. Algebra 174:2 (1995), 373-429. · Zbl 0826.13015 · doi:10.1006/jabr.1995.1132
[21] A. Kustin, “Use DG-methods to build a matrix factorization”, preprint, 2020. \newsentence To appear in Journal of Commutative Algebra.
[22] A. R. Kustin and M. Miller, “Algebra structures on minimal resolutions of Gorenstein rings of embedding codimension four”, Math. Z. 173:2 (1980), 171-184. · Zbl 0419.13013 · doi:10.1007/BF01159957
[23] A. R. Kustin and M. Miller, “Multiplicative structure on resolutions of algebras defined by Herzog ideals”, J. London Math. Soc. \((2) 28\):2 (1983), 247-260. · Zbl 0489.13005 · doi:10.1112/jlms/s2-28.2.247
[24] G. Lyubeznik, “A new explicit finite free resolution of ideals generated by monomials in an \(R\)-sequence”, J. Pure Appl. Algebra 51:1-2 (1988), 193-195. · Zbl 0652.13012 · doi:10.1016/0022-4049(88)90088-6
[25] T. Maeda, “Minimal algebra resolution associated with hook representations”, J. Algebra 237:1 (2001), 287-291. · Zbl 1030.13006 · doi:10.1006/jabr.2000.8576
[26] S. P. Slattery, “Algebra structures on resolutions of rings defined by grade four almost complete intersections”, J. Algebra 159:1 (1993), 1-46. · Zbl 0796.13011 · doi:10.1006/jabr.1993.1144
[27] H. Srinivasan, “Algebra structures on some canonical resolutions”, J. Algebra 122:1 (1989), 150-187. · Zbl 0676.13007 · doi:10.1016/0021-8693(89)90244-5
[28] H. Srinivasan, “Minimal algebra resolutions for cyclic modules defined by Huneke-Ulrich ideals”, J. Algebra 137:2 (1991), 433-472. · Zbl 0731.13011 · doi:10.1016/0021-8693(91)90101-D
[29] H. Srinivasan, “The nonexistence of a minimal algebra resolution despite the vanishing of Avramov obstructions”, J. Algebra 146:2 (1992), 251-266. · Zbl 0754.13014 · doi:10.1016/0021-8693(92)90067-V
[30] H. Srinivasan, “Algebra structures for graded free resolutions”, pp. 357-365 in Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), edited by W. J. Heinzer et al., Contemp. Math. 159, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0817.13005
[31] H. Srinivasan, “A grade five Gorenstein algebra with no minimal algebra resolutions”, J. Algebra 179:2 (1996), 362-379. · Zbl 0856.13011 · doi:10.1006/jabr.1996.0016
[32] J. · Zbl 0079.05501 · doi:10.1215/ijm/1255378502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.