×

Scaling relations for auxin waves. (English) Zbl 1505.34069

Summary: We analyze an ‘up-the-gradient’ model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi-Pasta-Ulam-Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34A33 Ordinary lattice differential equations
92C37 Cell biology
34B40 Boundary value problems on infinite intervals for ordinary differential equations
35C07 Traveling wave solutions

References:

[1] Adamowski, M.; Friml, J., PIN-dependent auxin transport: action, regulation, and evolution, Plant Cell, 27, 20-32 (2015) · doi:10.1105/tpc.114.134874
[2] Allen, HR; Ptashnyk, M., Mathematical modelling of auxin transport in plant tissues: flux meets signalling and growth, Bull Math Biol, 82, 1-35 (2020) · Zbl 1432.92041 · doi:10.1007/s11538-019-00685-y
[3] Althuis R (2021) Auxin waves in a two-dimensional grid. BSc thesis, Leiden University. https://pub.math.leidenuniv.nl/hupkeshj/scriptie_rosalie.pdf
[4] Aronson DG, Weinberger HF (1975) Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974). Lecture notes in mathematics, vol 446. Springer, Berlin, pp 5-49 · Zbl 0325.35050
[5] Aronson, DG; Weinberger, HF, Multidimensional nonlinear diffusion arising in population genetics, Adv Math, 30, 33-76 (1978) · Zbl 0407.92014 · doi:10.1016/0001-8708(78)90130-5
[6] Autran D, Bassel GW, Chae E, Ezer D, Ferjani A, Fleck C, Hamant O, Hartmann FP, Jiao Y, Johnston IG, Kwiatkowska D, Lim BL, Mahönen AP, Morris RJ, Mulder BM, Nakayama N, Sozzani R, Strader LC, Tusscher Kt, Ueda M, Wolf S (2021) What is quantitative plant biology? Quant Plant Biol 2
[7] Bayer, EM; Smith, RS; Mandel, T.; Nakayama, N.; Sauer, M.; Prusinkiewicz, P.; Kuhlemeier, C., Integration of transport-based models for phyllotaxis and midvein formation, Genes Dev, 23, 373-384 (2009) · doi:10.1101/gad.497009
[8] Beale, JT, Water waves generated by a pressure disturbance on a steady stream, Duke Math J, 47, 297-323 (1980) · Zbl 0437.76018 · doi:10.1215/S0012-7094-80-04719-5
[9] Benítez, M.; Hernández-Hernández, V.; Newman, SA; Niklas, KJ, Dynamical patterning modules, biogeneric materials, and the evolution of multicellular plants, Front Plant Sci, 9, 871 (2018) · doi:10.3389/fpls.2018.00871
[10] Brillouin, L., Wave propagation in periodic structures (1953), New York: Dover Phoenix Editions, New York · Zbl 0050.45002
[11] Chen, X.; Guo, J-S; Wu, C-C, Traveling waves in discrete periodic media for bistable dynamics, Arch Ration Mech Anal, 189, 189-236 (2008) · Zbl 1152.37033 · doi:10.1007/s00205-007-0103-3
[12] Cieslak, M.; Owens, A.; Prusinkiewicz, P., Computational models of auxin-driven patterning in shoots, Cold Spring Harb Perspect Biol, 14 (2021) · doi:10.1101/cshperspect.a040097
[13] Dauxois, T., Fermi, Pasta, Ulam, and a mysterious lady, Phys Today, 61, 55-57 (2008) · doi:10.1063/1.2835154
[14] Draelants, D.; Avitabile, D.; Vanroose, W., Localized auxin peaks in concentration-based transport models of the shoot apical meristem, J R Soc Interface, 12, 20141407 (2015) · doi:10.1098/rsif.2014.1407
[15] Emerenini, BO; Hense, BA; Kuttler, C.; Eberl, HJ, A mathematical model of quorum sensing induced biofilm detachment, PLoS ONE, 10, e0132385-e0132385 (2015) · doi:10.1371/journal.pone.0132385
[16] Faver TE (2018) Nanopteron-stegoton traveling waves in mass and spring dimer Fermi-Pasta-Ulam-Tsingou lattices. Ph.D. thesis, Drexel University, Philadelphia, PA, May · Zbl 1458.37079
[17] Faver, TE; Wright, JD, Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with optical band ripples at infinity, SIAM J Math Anal, 50, 182-250 (2018) · Zbl 1381.37092 · doi:10.1137/15M1046836
[18] Fendrych, M.; Leung, J.; Friml, J., TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls, Elife, 5, e19048 (2016) · doi:10.7554/eLife.19048
[19] Fermi, E.; Pasta, J.; Ulam, S., Studies of nonlinear problems, Lect Appl Math, 12, 143-56 (1955) · Zbl 0353.70028
[20] Friesecke, G.; Pego, RL, Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12, 1601-1627 (1999) · Zbl 0962.82015 · doi:10.1088/0951-7715/12/6/311
[21] Friesecke, G.; Pego, RL, Solitary waves on FPU lattices. II. Linear implies nonlinear stability, Nonlinearity, 15, 1343-1359 (2002) · Zbl 1102.37311 · doi:10.1088/0951-7715/15/4/317
[22] Friesecke, G.; Pego, RL, Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory, Nonlinearity, 17, 207-227 (2004) · Zbl 1103.37049 · doi:10.1088/0951-7715/17/1/013
[23] Friesecke, G.; Pego, RL, Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy, Nonlinearity, 17, 229-251 (2004) · Zbl 1103.37050 · doi:10.1088/0951-7715/17/1/014
[24] Friesecke, G.; Wattis, JAD, Existence theorem for solitary waves on lattices, Commun Math Phys, 161, 391-418 (1994) · Zbl 0807.35121 · doi:10.1007/BF02099784
[25] Ghasemi, M.; Sonner, S.; Eberl, HJ, Time adaptive numerical solution of a highly non-linear degenerate cross-diffusion system arising in multi-species biofilm modelling, Eur J Appl Math, 29, 1035-1061 (2018) · Zbl 1407.92109 · doi:10.1017/S0956792518000554
[26] Hajný, J.; Prát, T.; Rydza, N.; Rodriguez, L.; Tan, S.; Verstraeten, I.; Domjan, D.; Mazur, E.; Smakowska-Luzan, E.; Smet, W.; Mor, E.; Nolf, J.; Yang, B.; Grunewald, W.; Molnár, G.; Belkhadir, Y.; Rybel, BD; Friml, J., Receptor kinase module targets PIN-dependent auxin transport during canalization, Science, 370, 550-557 (2020) · doi:10.1126/science.aba3178
[27] Hajný, J.; Tan, S.; Friml, J., Auxin canalization: from speculative models toward molecular players, Curr Opin Plant Biol, 65 (2022) · doi:10.1016/j.pbi.2022.102174
[28] Haskovec, J.; Jönsson, H.; Kreusser, LM; Markowich, P., Auxin transport model for leaf venation, Proc R Soc A, 475, 20190015 (2019) · Zbl 1472.92147 · doi:10.1098/rspa.2019.0015
[29] Heisler, MG; Jonsson, H., Modeling auxin transport and plant development, J Plant Growth Regul, 25, 302-312 (2006) · doi:10.1007/s00344-006-0066-x
[30] Herrmann, M.; Matthies, K., Asymptotic formulas for solitary waves in the high-energy limit of FPU-type chains, Nonlinearity, 28, 2767-2789 (2015) · Zbl 1342.37074 · doi:10.1088/0951-7715/28/8/2767
[31] Hochstrasser, D.; Mertens, F.; Büttner, H., Energy transport by lattice solitons in \(\alpha \)-helical proteins, Phys Rev A, 40, 2602 (1989) · doi:10.1103/PhysRevA.40.2602
[32] Hoffman, A.; Wright, JD, Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio, Physica D, 358, 33-59 (2017) · Zbl 1378.35067 · doi:10.1016/j.physd.2017.07.004
[33] Holloway, DM; Wenzel, CL, Polar auxin transport dynamics of primary and secondary vein patterning in dicot leaves, in silico Plants, 3, diab030 (2021) · doi:10.1093/insilicoplants/diab030
[34] Hupkes, HJ; Sandstede, B., Travelling pulse solutions for the discrete FitzHugh-Nagumo system, SIAM J Appl Dyn Syst, 9, 827-882 (2010) · Zbl 1211.34007 · doi:10.1137/090771740
[35] Johnson, MA; Wright, JD, Generalized solitary waves in the gravity-capillary Whitham equation, Stud Appl Math, 144, 102-130 (2020) · Zbl 1454.35285 · doi:10.1111/sapm.12288
[36] Johnston, ST; Baker, RE; McElwain, DS; Simpson, MJ, Co-operation, competition and crowding: a discrete framework linking Allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves, Sci Rep, 7, 1-19 (2017) · doi:10.1038/srep42134
[37] Jones, C.; Kopell, N.; Langer, R.; Aris, R.; Aronson, DG; Swinney, HL, Construction of the FitzHugh-Nagumo pulse using differential forms, Patterns and dynamics in reactive media, 101-115 (1991), New York: Springer, New York · Zbl 0742.92008 · doi:10.1007/978-1-4612-3206-3_7
[38] Jönsson, H.; Heisler, M.; Shapiro, B.; Meyerowitz, E.; Mjolsness, E., An auxin-driven polarized transport model for phyllotaxis, Proc Natl Acad Sci USA, 103, 1633-1638 (2006) · doi:10.1073/pnas.0509839103
[39] Julien, JD; Pumir, A.; Boudaoud, A., Strain- or stress-sensing in mechanochemical patterning by the phytohormone auxin, Bull Math Biol, 81, 3342-3361 (2019) · Zbl 1422.92017 · doi:10.1007/s11538-019-00600-5
[40] Keener, JP, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J Appl Math, 47, 556-572 (1987) · Zbl 0649.34019 · doi:10.1137/0147038
[41] Kevrekidis, PG, Non-linear waves in lattices: past, present, future, IMA J Appl Math, 76, 389-423 (2011) · Zbl 1230.37099 · doi:10.1093/imamat/hxr015
[42] Kneuper, I.; Teale, W.; Dawson, JE; Tsugeki, R.; Katifori, E.; Palme, K.; Ditengou, FA, Auxin biosynthesis and cellular efflux act together to regulate leaf vein patterning, J Exp Bot, 72, 1151-1165 (2020) · doi:10.1093/jxb/eraa501
[43] Li, Y.; van Heijster, P.; Simpson, MJ; Wechselberger, M., Shock-fronted travelling waves in a reaction-diffusion model with nonlinear forward-backward-forward diffusion, Physica D, 423 (2021) · Zbl 1484.35286 · doi:10.1016/j.physd.2021.132916
[44] Mallet-Paret, J., The global structure of traveling waves in spatially discrete dynamical systems, J Dyn Differ Equ, 11, 49-128 (1999) · Zbl 0921.34046 · doi:10.1023/A:1021841618074
[45] Merks, RMH; Van de Peer, Y.; Inzé, D.; Beemster, GTS, Canalization without flux sensors: a traveling-wave hypothesis, Trends Plant Sci, 12, 384-390 (2007) · doi:10.1016/j.tplants.2007.08.004
[46] Mitchison, GJ, A model for vein formation in higher plants, Proc R Soc Lond Ser B Biol Sci, 207, 79-109 (1980)
[47] Mitchison, G., The polar transport of auxin and vein patterns in plants, Philos Trans R Soc Lond B Biol Sci, 295, 461-471 (1981) · doi:10.1098/rstb.1981.0154
[48] Moser P (2021) The propagation of auxin waves and wave trains. B.Sc. thesis, Leiden University. https://hdl.handle.net/1887/3197145
[49] Pankov, A., Travelling waves and periodic oscillations in Fermi-Pasta-Ulam lattices (2005), Singapore: Imperial College Press, Singapore · Zbl 1088.35001 · doi:10.1142/p381
[50] Paque, S.; Weijers, D., Q &a: Auxin: the plant molecule that influences almost anything, BMC Biol, 14, 67 (2016) · doi:10.1186/s12915-016-0291-0
[51] Razavi, MS; Shirani, E.; Kassab, GS, Scaling laws of flow rate, vessel blood volume, lengths, and transit times with number of capillaries, Front Physiol, 9, 581 (2018) · doi:10.3389/fphys.2018.00581
[52] Reinhardt, D.; Pesce, E-R; Stieger, P.; Mandel, T.; Baltensperger, K.; Bennett, M.; Traas, J.; Friml, J.; Kuhlemeier, C., Regulation of phyllotaxis by polar auxin transport, Nature, 426, 255-260 (2003) · doi:10.1038/nature02081
[53] Rolland-Lagan, A-G, Vein patterning in growing leaves: axes and polarities, Curr Opin Genet Dev, 18, 348-353 (2008) · doi:10.1016/j.gde.2008.05.002
[54] Rolland-Lagan, A-G; Prusinkiewicz, P., Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis, Plant J Cell Mol Biol, 44, 854-865 (2005) · doi:10.1111/j.1365-313X.2005.02581.x
[55] Sachs, T., The induction of transport channels by auxin, Planta, 127, 201-206 (1975) · doi:10.1007/BF00380716
[56] Sandstede, B.; Fiedler, B., Stability of travelling waves, Handbook of dynamical systems, 983-1055 (2002), Amsterdam: Elsevier, Amsterdam · Zbl 1056.35022
[57] Scarpella, E.; Marcos, D.; Friml, J.; Berleth, T., Control of leaf vascular patterning by polar auxin transport, Genes Dev, 20, 1015-1027 (2006) · doi:10.1101/gad.1402406
[58] Schmidt-Nielsen, K.; Knut, S-N, Scaling: why is animal size so important? (1984), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9781139167826
[59] Shi, B.; Vernoux, T., Patterning at the shoot apical meristem and phyllotaxis, Curr Top Dev Biol, 131, 81-107 (2018) · doi:10.1016/bs.ctdb.2018.10.003
[60] Shih, Y-L; Huang, L-T; Tu, Y-M; Lee, B-F; Bau, Y-C; Hong, CY; lin Lee, H.; Shih, Y-P; Hsu, M-F; Lu, Z-X; Chen, J-S; Chao, L., Active transport of membrane components by self-organization of the Min proteins, Biophys J, 116, 1469-1482 (2019) · doi:10.1016/j.bpj.2019.03.011
[61] Smith, RS; Guyomarc’h, S.; Mandel, T.; Reinhardt, D.; Kuhlemeier, C.; Prusinkiewicz, P., A plausible model of phyllotaxis, Proc Natl Acad Sci USA, 103, 1301-1306 (2006) · doi:10.1073/pnas.0510457103
[62] Sonner, S.; Efendiev, MA; Eberl, HJ, On the well-posedness of a mathematical model of quorum-sensing in patchy biofilm communities, Math Methods Appl Sci, 34, 1667-1684 (2011) · Zbl 1221.35214 · doi:10.1002/mma.1475
[63] Stefanov, A.; Wright, JD, Small amplitude traveling waves in the full-dispersion Whitham equation, J Dyn Differ Equ, 32, 85-99 (2020) · Zbl 1436.34018 · doi:10.1007/s10884-018-9713-8
[64] van Berkel, K.; de Boer, RJ; Scheres, B.; ten Tusscher, K., Polar auxin transport: models and mechanisms, Development, 140, 2253-2268 (2013) · doi:10.1242/dev.079111
[65] Verna, C.; Ravichandran, SJ; Sawchuk, MG; Linh, NM; Scarpella, E., Coordination of tissue cell polarity by auxin transport and signaling, Elife, 8, e51061 (2019) · doi:10.7554/eLife.51061
[66] Walke, ML; Farcot, E.; Traas, J.; Godin, C., The flux-based pin allocation mechanism can generate either canalyzed or diffuse distribution patterns depending on geometry and boundary conditions, PLoS ONE, 8 (2013) · doi:10.1371/journal.pone.0054802
[67] West, GB; Brown, JH, Life’s universal scaling laws, Phys Today, 57, 36-43 (2004) · doi:10.1063/1.1809090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.