×

Optimality conditions for bilevel imaging learning problems with total variation regularization. (English) Zbl 1504.94012

Summary: We address the problem of optimal scale-dependent parameter learning in total variation image denoising. Such problems are formulated as bilevel optimization instances with total variation denoising problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity conditions, after characterizing the corresponding Mordukhovich generalized normal cone and verifying suitable constraint qualification conditions. We also derive B-stationarity conditions, after investigating the Lipschitz continuity and directional differentiability of the lower-level solution operator. A characterization of the Bouligand subdifferential of the solution mapping, by means of a properly defined linear system, is provided as well. Based on this characterization, we propose a two-phase nonsmooth trust-region algorithm for the numerical solution of the bilevel problem and test it computationally for two particular experimental settings.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
68U10 Computing methodologies for image processing
68T05 Learning and adaptive systems in artificial intelligence
65K10 Numerical optimization and variational techniques

References:

[1] Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon, Implicit differentiation of Lasso-type models for hyperparameter optimization, in Proceedings of the 37th International Conference on Machine Learning, PMLR, 2020, pp. 810-821.
[2] C. Caillaud and A. Chambolle, Error Estimates for Finite Differences Approximations of the Total Variation, preprint hal-02539136, https://hal.archives-ouvertes.fr/hal-02539136, 2020.
[3] L. Calatroni, C. Cao, J. C. De los Reyes, C.-B. Schönlieb, and T. Valkonen, Bilevel approaches for learning of variational imaging models, in Variational Methods: In Imaging and Geometric Control, M. Bergounioux et al., eds., De Gruyter, 2017, pp. 252-290. · Zbl 1468.94014
[4] L. Calatroni, J. C. De los Reyes, and C.-B. Schönlieb, Dynamic sampling schemes for optimal noise learning under multiple nonsmooth constraints, in System Modeling and Optimization (CSMO 2013), IFIP Advances in Information and Communication Technology, Vol. 443, C. Pötzsche et al., eds., Springer, 2013, pp. 85-95. · Zbl 1333.94008
[5] L. Calatroni and K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed Gaussian and salt-and-pepper noise removal, Inverse Problems, 35 (2019), 114001, https://doi.org/10.1088/1361-6420/ab291a. · Zbl 1426.49027
[6] A. Chambolle and T. Pock, Crouzeix-Raviart approximation of the total variation on simplicial meshes, J. Math. Imaging Vision, 62 (2020), pp. 872-899. · Zbl 1486.49062
[7] A. Chambolle and T. Pock, Learning consistent discretizations of the total variation, SIAM J. Imaging Sci., 14 (2021), pp. 778-813, https://doi.org/10.1137/20M1377199. · Zbl 1477.49047
[8] C. Christof, J. C. De los Reyes, and C. Meyer, A nonsmooth trust-region method for locally Lipschitz functions with application to optimization problems constrained by variational inequalities, SIAM J. Optim., 30 (2020), pp. 2163-2196, https://doi.org/10.1137/18M1164925. · Zbl 1446.49006
[9] C. V. Chung, J. C. De los Reyes, and C.-B. Schönlieb, Learning optimal spatially-dependent regularization parameters in total variation image denoising, Inverse Problems, 33 (2017), 074005. · Zbl 1371.49018
[10] J. C. De los Reyes, Numerical PDE-Constrained Optimization, Springer, 2015. · Zbl 1312.65100
[11] J. C. De los Reyes, C.-B. Schönlieb, and T. Valkonen, The structure of optimal parameters for image restoration problems, J. Math. Anal. Appl., 434 (2016), pp. 464-500. · Zbl 1327.49063
[12] J. C. De los Reyes, C.-B. Schönlieb, and T. Valkonen, Bilevel parameter learning for higher-order total variation regularisation models, J. Math. Imaging Vision, 57 (2017), pp. 1-25. · Zbl 1425.94010
[13] J. C. De los Reyes and C.-B. Schönlieb, Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization, Inverse Probl. Imaging, 7 (2013), pp. 1183-1214. · Zbl 1283.49005
[14] J. C. De los Reyes and D. Villacís, Bilevel optimization methods in imaging, in Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, K. Chen et al., eds., Springer, 2021, pp. 1-34.
[15] M. D’Elia, J. C. De los Reyes, and A. Miniguano-Trujillo, Bilevel parameter learning for nonlocal image denoising models, J. Math. Imaging Vision, 63 (2021), pp. 753-775. · Zbl 1515.94014
[16] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics Appl. Math. 28, SIAM, 1999, https://doi.org/10.1137/1.9781611971088. · Zbl 0939.49002
[17] J. Frecon, S. Salzo, and M. Pontil, Bilevel learning of the group lasso structure, in Advances in Neural Information Processing Systems, Vol. 31, Curran Associates, Inc., 2018.
[18] C. Geiger and C. Kanzow, Theorie und Numerik restringierter Optimierungsaufgaben, Springer-Verlag, 2013. · Zbl 1003.90044
[19] M. Hintermüller and K. Papafitsoros, Generating structured nonsmooth priors and associated primal-dual methods, in Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Handb. Numer. Anal. 20, Elsevier, 2019, pp. 437-502. · Zbl 1446.49025
[20] M. Hintermüller, K. Papafitsoros, C. N. Rautenberg, and H. Sun, Dualization and Automatic Distributed Parameter Selection of Total Generalized Variation via Bilevel Optimization, preprint, https://arxiv.org/abs/2002.05614, 2020. · Zbl 07559547
[21] M. Hintermüller and T. Wu, Bilevel optimization for calibrating point spread functions in blind deconvolution, Inverse Probl. Imaging, 9 (2015), pp. 1139-1169. · Zbl 1343.49023
[22] J. Jahn, Introduction to the Theory of Nonlinear Optimization, Springer Nature, 2020. · Zbl 0814.49001
[23] T. Klatzer and T. Pock, Continuous hyper-parameter learning for support vector machines, in Computer Vision Winter Workshop (CVWW), TU Graz Verlag, 2015, pp. 39-47.
[24] K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models, SIAM J. Imaging Sci., 6 (2013), pp. 938-983, https://doi.org/10.1137/120882706. · Zbl 1280.49053
[25] Z. Liu, P. Luo, X. Wang, and X. Tang, Deep learning face attributes in the wild, in Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 3730-3738.
[26] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, 1996.
[27] P. Ochs, R. Ranftl, T. Brox, and T. Pock, Techniques for gradient-based bilevel optimization with non-smooth lower level problems, J. Math. Imaging Vision, 56 (2016), pp. 175-194. · Zbl 1352.65155
[28] J. T. Oden, Book review: Numerical methods for nonlinear variational problems [R. Glowinski, Springer-Verlag, 1984], J. Appl. Mech., 52 (1985), pp. 739-740. · Zbl 0536.65054
[29] J. V. Outrata, A generalized mathematical program with equilibrium constraints, SIAM J. Control Optim., 38 (2000), pp. 1623-1638, https://doi.org/10.1137/S0363012999352911. · Zbl 0968.49012
[30] R. Ranftl and T. Pock, A deep variational model for image segmentation, in Pattern Recognition (GCPR 2014), Lecture Notes in Comput. Sci. 8753, X. Jiang, J. Hornegger, and R. Koch, eds., Springer, 2014, pp. 107-118.
[31] W. Ring, Structural properties of solutions to total variation regularization problems, ESAIM Math. Model. Numer. Anal., 34 (2000), pp. 799-810. · Zbl 1018.49021
[32] R. T. Rockafellar, Convex Analysis, Princeton University Press, 2015.
[33] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer-Verlag, 1998. · Zbl 0888.49001
[34] S. Scholtes, Introduction to Piecewise Differentiable Equations, SpringerBriefs Optim., Springer, 2012. · Zbl 1453.49002
[35] C. Voglis and I. Lagaris, A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization, in WSEAS International Conference on Applied Mathematics, 2004, https://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.548.3355.
[36] L. Xu and J. Burke, ASTRAL: An active set \(\ell_\infty \)-trust-region algorithm for box constrained optimization, Optimization Online, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.