×

Classical and quantum integrability of the three-dimensional generalized trapped ion Hamiltonian. (English) Zbl 1504.37072


MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics
81Q80 Special quantum systems, such as solvable systems
81U15 Exactly and quasi-solvable systems arising in quantum theory
Full Text: DOI

References:

[1] Ganesan, K.; Lakshmanan, M., Dynamics of atomic hydrogen in a generalized van der waals potential, Phys Rev A, 42, 7, 3940 (1990)
[2] Conte, R.; Musette, M., The painlevé handbook (2020), 391 pages · Zbl 1489.34001
[3] Xu, G.-Q., The painlevé integrability of two parameterized nonlinear evolution equations using symbolic computation, Chaos, Solitons Fractals, 33, 5, 1652-1657 (2007) · Zbl 1152.35463
[4] Palacián, J.; Yanguas, P., Painlevé analysis and integrable cases of coupled cubic oscillators in the plane, Chaos, Solitons Fractals, 11, 6, 879-887 (2000) · Zbl 1121.37315
[5] Ravoson, V.; Gavrilov, L.; Caboz, R., Separability and lax pairs for Hénon-Heiles system, J Math Phys, 34, 6, 2385-2393 (1993) · Zbl 0784.58029
[6] Llibre, J.; Valls, C., Darboux integrability and algebraic invariant surfaces for the Rikitake system, J Math Phys, 49, 3, Article 032702 pp. (2008) · Zbl 1153.81395
[7] Skokos, C. H.; Manos, T., The smaller (sali) and the generalized (gali) alignment indices: efficient methods of chaos detection, (Chaos detection and predictability (2016), Springer), 129-181
[8] Khandekar, D.; Lawande, S., Exact solution of a time-dependent quantal harmonic oscillator with damping and a perturbative force, J Math Phys, 20, 9, 1870-1877 (1979)
[9] Heller, E. J., The semiclassical way to dynamics and spectroscopy (2018), Princeton University Press · Zbl 1409.81003
[10] Hiranwal, R.; Mishra, S.; Mishra, V., Classical and quantum integrability for a class of potentials in two dimensions, Ann Phys Rehabil Med, 309, 2, 390-420 (2004) · Zbl 1040.81035
[11] Virdi, J. P.S., Systematic studies on classical and quantum dynamical systems (2013), Panjab University Chandigarh, Ph.D. thesis
[12] Chand, F., Fourth-order constants of motion for time independent classical and quantum systems in three dimensions, Can J Phys, 88, 3, 165-174 (2010)
[13] Beims, M. W.; Gallas, J. A., Integrals of motion and quantum operators for hydrogenic atoms in external fields, Phys Rev A, 62, 4, Article 043410 pp. (2000)
[14] Cirelli, R.; Maniá, A.; Pizzocchero, L., Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: part ii, J Math Phys, 31, 12, 2898-2903 (1990) · Zbl 0850.70207
[15] Enciso, A.; Peralta-Salas, D., Classical and quantum integrability of Hamiltonians without scattering states, Theor Math Phys, 148, 2, 1086-1099 (2006) · Zbl 1177.81058
[16] Cirelli, R.; Gatti, M.; Maniá, A., The pure state space of quantum mechanics as Hermitian symmetric space, J Geom Phys, 45, 3-4, 267-284 (2003) · Zbl 1032.81021
[17] Castagnino, M.; Lombardi, O., The classical limit of non-integrable quantum systems, a route to quantum chaos, Chaos, Solitons Fractals, 28, 4, 879-898 (2006) · Zbl 1097.81050
[18] Gomez, I.; Castagnino, M., On the classical limit of quantum mechanics, fundamental graininess and chaos: compatibility of chaos with the correspondence principle, Chaos, Solitons Fractals, 68, 98-113 (2014) · Zbl 1354.81026
[19] Dirac, P. A.M., The principles of quantum mechanics (1958) · Zbl 0080.22005
[20] Korsch, H. J., On classical and quantum integrability, Phys Lett A, 90, 3, 113-114 (1982)
[21] Moyal, J. E., Quantum mechanics as a statistical theory, (Mathematical proceedings of the Cambridge Philosophical Society, vol. 45 (1949), Cambridge University Press), 99-124 · Zbl 0031.33601
[22] Wineland, D. J.; Itano, W. M., Laser cooling, Phys Today, 40, 6, 34-47 (1987)
[23] Blythe, P.; Roth, B.; Fröhlich, U.; Wenz, H.; Schiller, S., Production of ultracold trapped molecular hydrogen ions, Phys Rev Lett, 95, 18, Article 183002 pp. (2005)
[24] Baba, T.; Waki, I., Chemical reaction of sympathetically laser-cooled molecular ions, J Chem Phys, 116, 5, 1858-1861 (2002)
[25] Rösch, D.; Willitsch, S.; Chang, Y.-P.; Küpper, J., Chemical reactions of conformationally selected 3-aminophenol molecules in a beam with coulomb-crystallized ca+ ions, J Chem Physics, 140, 12, Article 03B624 pp. (2014), 1
[26] Chang, Y.-P.; Lecki, K. D. Lugo; Küpper, J.; Rösch, D.; Wild, D.; Willitsch, S., Science, 342, 98 (2013)
[27] Tong, X.; Nagy, T.; Reyes, J. Y.; Germann, M.; Meuwly, M.; Willitsch, S., State-selected ion-molecule reactions with coulomb-crystallized molecular ions in traps, Chem Phys Lett, 547, 1-8 (2012)
[28] Douglas, D. J.; Frank, A. J.; Mao, D., Linear ion traps in mass spectrometry, Mass Spectrom Rev, 24, 1, 1-29 (2005)
[29] Leanhardt, A. E.; Bohn, J. L.; Loh, H.; Maletinsky, P.; Meyer, E. R.; Sinclair, L. C.; Stutz, R. P.; Cornell, E. A., High-resolution spectroscopy on trapped molecular ions in rotating electric fields: a new approach for measuring the electron electric dipole moment, J Mol Spectrosc, 270, 1, 1-25 (2011)
[30] Loh, H.; Cossel, K. C.; Grau, M.; Ni, K.-K.; Meyer, E. R.; Bohn, J. L.; Ye, J.; Cornell, E. A., Precision spectroscopy of polarized molecules in an ion trap, Science, 342, 6163, 1220-1222 (2013)
[31] Porras, D.; Cirac, J. I., Quantum manipulation of trapped ions in two dimensional coulomb crystals, Phys Rev Lett, 96, 25, Article 250501 pp. (2006)
[32] Alonso, J.; Leupold, F. M.; Keitch, B. C.; Home, J. P., Quantum control of the motional states of trapped ions through fast switching of trapping potentials, New J Phys, 15, 2, Article 023001 pp. (2013)
[33] Buluta, I.; Kitaoka, M.; Georgescu, S.; Hasegawa, S., Investigation of planar coulomb crystals for quantum simulation and computation, Phys Rev A, 77, 6, Article 062320 pp. (2008)
[34] Mokhberi, A.; Willitsch, S., Sympathetic cooling of molecular ions in a surface-electrode ion trap, Phys Rev A, 90, 2, Article 023402 pp. (2014)
[35] Joshi, M. K.; Satyajit, K.; Rao, P. M., Influence of a geometrical perturbation on the ion dynamics in a 3d Paul trap, Nucl Instrum Methods Phys Res, Sect A, 800, 111-118 (2015)
[36] Xiong, C.; Zhou, X.; Zhang, N.; Zhan, L.; Chen, Y.; Chen, S.; Nie, Z., A theoretical method for characterizing nonlinear effects in Paul traps with added octopole field, J Am Soc Mass Spectrom, 26, 8, 1338-1348 (2015)
[37] Doroudi, A.; Asl, A. R., Calculation of secular axial frequencies in a nonlinear ion trap with hexapole, octopole and decapole superpositions by a modified Lindstedt-Poincare method, Int J Mass Spectrom, 309, 104-108 (2012)
[38] Georgiev, G., Non-integrability of the trapped ionic system, Chaos, Solitons Fractals, 147, Article 110994 pp. (2021)
[39] El Fakkousy, I.; Zouhairi, B.; Kharbach, J., Comment on “non-integrability of the trapped ionic system”. by Georgi Georgiev, Chaos, Solitons Fractals, 156, Article 111815 pp. (2022)
[40] Li, F.-L., Quantum motion of a charged particle in a Paul trap, Phys Rev A, 47, 6, 4975 (1993)
[41] Major, F. G.; Gheorghe, V. N.; Major, S. P.F. G.; Werth, G.; Werth, G., Charged particle traps: physics and techniques of charged particle field confinement, vol. 37 (2005), Springer Science & Business Media
[42] Combescure, M., A quantum particle in a quadrupole radio-frequency trap, (Annales de l’IHP Physique théorique, vol. 44 (1986)), 293-314 · Zbl 0613.46064
[43] Cook, R. J.; Shankland, D. G.; Wells, A. L., Quantum theory of particle motion in a rapidly oscillating field, Phys Rev A, 31, 2, 564 (1985)
[44] Brown, L. S., Quantum motion in a Paul trap, Phys Rev Lett, 66, 5, 527 (1991) · Zbl 0968.81513
[45] Glauber, R., Laser manipulation of atoms and ions, (Proc. int. school of physics ‘enrico fermi’, course 118 ed e arimondo, wd phillips and f strumia (1992))
[46] Mihalcea, B., Time dependent variational principle and coherent state orbits for a trapped ion (2011), 07
[47] Mihalcea, B. M.; Lynch, S., Investigations on dynamical stability in 3d quadrupole ion traps, Appl Sci, 11, 7, 2938 (2021)
[48] Brkić, B.; Taylor, S.; Ralph, J. F.; France, N., High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method, Phys Rev A, 73, 1, Article 012326 pp. (2006)
[49] Wang, Y.; Franzen, J.; Wanczek, K., The non-linear resonance ion trap. Part 2. A general theoretical analysis, Int J Mass Spectrom Ion Processes, 124, 2, 125-144 (1993)
[50] Dawson, P.; Whetten, N., Ion storage in three-dimensional, rotationally symmetric, quadrupole fields. i. Theoretical treatment, J Vac Sci Technol, 5, 1, 1-10 (1968)
[51] Lunney, M. D.N.; Webb, J.; Moore, R., Finite-element analysis of radio-frequency quadrupole traps, J Appl Phys, 65, 8, 2883-2888 (1989)
[52] Londry, F. A.; Alfred, R. L.; March, R. E., Computer simulation of single-ion trajectories in Paul-type ion traps, J Am Soc Mass Spectrom, 4, 9, 687-705 (1993)
[53] Baumann, G.; Nonnenmacher, T. F., Regular and chaotic motions in ion traps: a nonlinear analysis of trap equations, Phys Rev A, 46, 2682-2692 (1992)
[54] Reiser, H.-P.; Julian, R. K.; Cooks, R. G., A versatile method of simulation of the operation of ion trap mass spectrometers, Int JMass Spectrom Ion Process, 121, 1-2, 49-63 (1992)
[55] Wu, G.; Cooks, R. G.; Ouyang, Z.; Yu, M.; Chappell, W. J.; Plass, W. R., Ion trajectory simulation for electrode configurations with arbitrary geometries, J Am Soc Mass Spectrom, 17, 9, 1216-1228 (2006)
[56] Herbane, M. S., Minimized computational time method for the dynamics of ions trapped in an ideal quadrupole ion trap, Int J Mass Spectrom, 303, 2-3, 73-80 (2011)
[57] Lanchares, V.; Pascual, A.; Palacián, J.; Yanguas, P.; Salas, J., Perturbed ion traps: a generalization of the three-dimensional hénon-heiles problem, Chaos, 12, 1, 87-99 (2002) · Zbl 1080.37609
[58] El Fakkousy, I.; Kharbach, J.; Chatar, W.; Benkhali, M.; Rezzouk, A.; Ouazzani-Jamil, M., Liouvillian integrability of the three-dimensional generalized Hénon-Heiles Hamiltonian, Eur Phys J Plus, 135, 7, 1-17 (2020)
[59] Molero, F. J.; Lara, M.; Ferrer, S.; Céspedes, F., 2-d during oscillator: elliptic functions from a dynamical systems point of view, Qual Theory Dyn Syst, 12, 1, 115-139 (2013) · Zbl 1270.33011
[60] Lesfari, A., Systèmes dynamiques algébriquement complètement intégrables et géométrie, annals of west University of Timisoarbounta-Mathematics and ComputerScience, 53, 1, 109-136 (2015) · Zbl 1374.70043
[61] Llibre, J.; Valls, C., Darboux integrability of generalized Yang-Mills Hamiltonian system, J Nonlinear Math Phys, 23, 2, 234-242 (2016) · Zbl 1420.37037
[62] Sottocornola, N., Explicit integration of a generic Hénon-Heiles system with quartic potential, J Nonlinear Math Phys, 24, 3, 346-355 (2017) · Zbl 1420.37042
[63] El-Sabaa, F.; Hosny, M.; Zakria, S., Bifurcations of Armbruster Guckenheimer Kim galactic potential, Astrophys Space Sci, 364, 2, 1-9 (2019)
[64] Ablowitz, M.; Ramani, A.; Segur, H., Nonlinear evolution equations and ordinary differential equations of painleve’type, Lettere Al Nuovo Cimento, 23, 9, 333-338 (1978)
[65] Tsiganov, A. V., On maximally superintegrable systems, Regular Chaotic Dyn, 13, 3, 178-190 (2008) · Zbl 1229.37075
[66] Chandrasekhar, S., Principles of stellar dynamics (2005), Courier Corporation · Zbl 0060.46307
[67] Georgiev, G., For the integrability of the 2d trapped ionic system, AIP Conf Proc, 2333, 1, Article 040005 pp. (2021)
[68] Hietarinta, J., Quantum integrability is not a trivial consequence of classical integrability, Phys Lett A, 93, 2, 55-57 (1982)
[69] Weigert, S., The problem of quantum integrability, Physica D, 56, 1, 107-119 (1992)
[70] Hietarinta, J., Classical versus quantum integrability, J Math Phys, 25, 6, 1833-1840 (1984)
[71] Hietarinta, J.; Grammaticos, B., On the 2 correction terms in quantum integrability, J Phys A Math Gen, 22, 9, 1315 (1989)
[72] Agarwal, G.; Wolf, E., Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. ii. Quantum mechanics in phase space, Phys Rev D, 2, 10, 2187 (1970) · Zbl 1227.81197
[73] Shewell, J. R., On the formation of quantum-mechanical operators, Am J Phys, 27, 1, 16-21 (1959)
[74] Cohen, L., Correspondence rules and path integrals, J Math Phys, 17, 4, 597-598 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.