×

Lessons from the information paradox. (English) Zbl 1503.83012

Summary: We review recent progress on the information paradox. We explain why exponentially small correlations in the radiation emitted by a black hole are sufficient to resolve the original paradox put forward by Hawking. We then describe a refinement of the paradox that makes essential reference to the black-hole interior. This analysis leads to a broadly-applicable physical principle: in a theory of quantum gravity, a copy of all the information on a Cauchy slice is also available near the boundary of the slice. This principle can be made precise and established – under weak assumptions, and using only low-energy techniques – in asymptotically global AdS and in four dimensional asymptotically flat spacetime. When applied to black holes, this principle tells us that the exterior of the black hole always retains a complete copy of the information in the interior. We show that accounting for this redundancy provides a resolution of the information paradox for evaporating black holes and, conversely, that ignoring this redundancy leads to paradoxes even in the absence of black holes. We relate this perspective to recent computations of the Page curve for holographic CFTs coupled to nongravitational baths. But we argue that such models may provide an inaccurate picture of the rate at which information can be extracted from evaporating black holes in asymptotically flat space. We discuss large black holes dual to typical states in AdS/CFT and the new paradoxes that arise in this setting. These paradoxes also extend to the eternal black hole. They can be resolved by assuming that the map between the boundary CFT and the black-hole interior is state dependent. We discuss the consistency of state-dependent bulk reconstructions. We conclude by examining the viability of arguments for firewalls, fuzzballs and other kinds of structure at the horizon.

MSC:

83C57 Black holes
49N30 Problems with incomplete information (optimization)
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83E05 Geometrodynamics and the holographic principle
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83C45 Quantization of the gravitational field
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)

References:

[1] Hawking, S., Breakdown of predictability in gravitational collapse, Phys. Rev. D, 14, 2460-2473 (1976)
[2] Hawking, S., Particle creation by black holes, Comm. Math. Phys., 43, 199-220 (1975) · Zbl 1378.83040
[3] Mathur, S. D., The information paradox: A pedagogical introduction, Classical Quantum Gravity, 26, Article 224001 pp. (2009), [0909.1038] · Zbl 1181.83129
[4] Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J., Black holes: Complementarity or firewalls?, J. High Energy Phys., 02, 062 (2013), [1207.3123] · Zbl 1342.83121
[5] Laddha, Alok; Prabhu, Siddharth G.; Raju, Suvrat; Shrivastava, Pushkal, The holographic nature of null infinity, SciPost Phys., 10, 2, 041 (2021), [2002.02448]
[6] Penington, G., Entanglement wedge reconstruction and the information paradox, J. High Energy Phys., 09, 002 (2020), [1905.08255] · Zbl 1454.81039
[7] G. Penington, S.H. Shenker, D. Stanford, Z. Yang, Replica wormholes and the black hole interior, 1911.11977.
[8] A. Almheiri, R. Mahajan, J. Maldacena, Islands outside the horizon, 1910.11077.
[9] Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A., Replica wormholes and the entropy of Hawking radiation, J. High Energy Phys., 05, 013 (2020), [1911.12333] · Zbl 1437.83084
[10] Page, D. N., Average entropy of a subsystem, Phys. Rev. Lett., 71, 1291-1294 (1993), [gr-qc/9305007] · Zbl 0972.81504
[11] Lubkin, E., Entropy of an n-system from its correlation with a k-reservoir, J. Math. Phys., 19, 1028-1031 (1978) · Zbl 0389.94006
[12] Almheiri, A.; Marolf, D.; Polchinski, J.; Stanford, D.; Sully, J., An apologia for firewalls, J. High Energy Phys., 09, 018 (2013), [1304.6483]
[13] Marolf, D.; Polchinski, J., Gauge/gravity duality and the black hole interior, Phys. Rev. Lett., 111, Article 171301 pp. (2013), [1307.4706]
[14] Maldacena, J. M., The large N limit of superconformal field theories and supergravity, Internat. J. Theoret. Phys., 38, 1113-1133 (1999), [hep-th/9711200] · Zbl 0969.81047
[15] Gubser, S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105-114 (1998), [hep-th/9802109] · Zbl 1355.81126
[16] Witten, E., Anti-de sitter space and holography, Adv. Theor. Math. Phys., 2, 253-291 (1998), [hep-th/9802150] · Zbl 0914.53048
[17] Papadodimas, K.; Raju, S., State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev. D, 89, Article 086010 pp. (2014), [1310.6335]
[18] Marolf, D.; Polchinski, J., Violations of the Born rule in cool state-dependent horizons, J. High Energy Phys., 01, 008 (2016), [1506.01337] · Zbl 1388.83482
[19] Raju, S., Smooth causal patches for AdS black holes, Phys. Rev. D, 95, Article 126002 pp. (2017), [1604.03095]
[20] Harlow, D., Jerusalem lectures on black holes and quantum information, Rev. Modern Phys., 88, Article 015002 pp. (2016), [1409.1231]
[21] Chakraborty, S.; Lochan, K., Black holes: Eliminating information or illuminating new physics?, Universe, 3, 55 (2017), [1702.07487]
[22] Perez, A., Black holes in loop quantum gravity, Rep. Progr. Phys., 80, Article 126901 pp. (2017), [1703.09149]
[23] Birrell, N.; Davies, P., Quantum Fields in Curved Space (1986), Cambridge Univ Press · Zbl 0972.81605
[24] Wald, R. M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (1994), University of Chicago Press · Zbl 0842.53052
[25] Papadodimas, K.; Raju, S.; Shrivastava, P., A simple quantum test for smooth horizons, J. High Energy Phys., 12, 003 (2020), [1910.02992] · Zbl 1457.83019
[26] Emparan, R.; Reall, H. S., Black holes in higher dimensions, Living Rev. Relativ., 11 (2008) · Zbl 1166.83002
[27] Candelas, P., Vacuum polarization in Schwarzschild space-time, Phys. Rev. D, 21, 2185-2202 (1980)
[28] DeWitt, B. S., Quantum field theory in curved spacetime, Phys. Rep., 19, 295-357 (1975)
[29] Lloyd, S.; Holes, Black., Black Holes Demons and the Loss of Coherence: How Complex Systems Get Information, and What They Do with It (1988), Rockefeller University, (Ph.D. thesis)
[30] Raju, S.; Shrivastava, P., Critique of the fuzzball program, Phys. Rev. D, 99, Article 066009 pp. (2019), [1804.10616]
[31] Deutsch, J. M., Quantum statistical mechanics in a closed system, Phys. Rev. A, 43, 2046-2049 (1991)
[32] Srednicki, M., Chaos and quantum thermalization, Phys. Rev. E, 50, 888 (1994)
[33] Srednicki, M., The approach to thermal equilibrium in quantized chaotic systems, J. Phys. A: Math. Gen., 32, 1163 (1999) · Zbl 1055.81561
[34] Brustein, R.; Medved, A., Phases of information release during black hole evaporation, J. High Energy Phys., 02, 116 (2014), [1310.5861]
[35] Brustein, R.; Medved, A., Restoring predictability in semiclassical gravitational collapse, J. High Energy Phys., 09, 015 (2013), [1305.3139]
[36] Saini, A.; Stojkovic, D., Radiation from a collapsing object is manifestly unitary, Phys. Rev. Lett., 114, Article 111301 pp. (2015), [1503.01487]
[37] Raju, S., A toy model of the information paradox in empty space, SciPost Phys., 6, 073 (2019), [1809.10154]
[38] Bell, J. S., On the einstein podolsky rosen paradox, Phys. Phys. Fiz., 1, 195 (1964)
[39] Clauser, J. F.; Horne, M. A.; Shimony, A.; Holt, R. A., Proposed experiment to test local hidden variable theories, Phys. Rev. Lett., 23, 880-884 (1969) · Zbl 1371.81014
[40] Cirel’son, B. S., Quantum generalizations of bell’s inequality, Lett. Math. Phys., 4, 93-100 (1980)
[41] B. Toner, F. Verstraete, Monogamy of bell correlations and tsirelson’s bound, 0611001.
[42] Toner, B., Monogamy of non-local quantum correlations, Proc. R. Soc. A, 465, 59-69 (2009), [quant-ph/0601172] · Zbl 1186.81012
[43] Chen, Z.-B.; Pan, J.-W.; Hou, G.; Zhang, Y.-D., Maximal violation of bell’s inequalities for continuous variable systems, Phys. Rev. Lett., 88, Article 040406 pp. (2002)
[44] Skenderis, K.; Taylor, M., The fuzzball proposal for black holes, Phys. Rep., 467, 117-171 (2008), [0804.0552]
[45] Mathur, S. D., The Fuzzball proposal for black holes: An elementary review, Fortschr. Phys., 53, 793-827 (2005), [hep-th/0502050] · Zbl 1116.83300
[46] Mathur, S. D.; Turton, D., Comments on black holes I: The possibility of complementarity, J. High Energy Phys., 01, 034 (2014), [1208.2005] · Zbl 1333.83104
[47] Avery, S. G.; Chowdhury, B. D.; Puhm, A., Unitarity and fuzzball complementarity: ‘alice fuzzes but may not even know it!’, J. High Energy Phys., 09, 012 (2013), [1210.6996]
[48] DeWitt, B. S., The quantization of geometry, (Witten, L., Gravitation: An Introduction to Current Research (1963), John Wiley & Sons)
[49] Kuchar, K., The problem of time in canonical quantization, (Ashtekar, A.; Stachel, J., Conceptual Problems of Quantum Gravity (1991), Birkhauser) · Zbl 0850.83029
[50] Giddings, S. B.; Marolf, D.; Hartle, J. B., Observables in effective gravity, Phys. Rev. D, 74, Article 064018 pp. (2006), [hep-th/0512200]
[51] Donnelly, W.; Giddings, S. B., Gravitational splitting at first order: Quantum information localization in gravity, Phys. Rev. D, 98, Article 086006 pp. (2018), [1805.11095]
[52] Papadodimas, K.; Raju, S., Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D, 93, Article 084049 pp. (2016), [1503.08825]
[53] A. Karlsson, Replica wormhole and island incompatibility with monogamy of entanglement, 2007.10523.
[54] A. Karlsson, A paradox regarding monogamy of entanglement, 1911.09226.
[55] Casini, H.; Huerta, M.; Rosabal, J. A., Remarks on entanglement entropy for gauge fields, Phys. Rev. D, 89, Article 085012 pp. (2014), [1312.1183]
[56] Casini, H.; Huerta, M., Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice, Phys. Rev. D, 90, Article 105013 pp. (2014), [1406.2991]
[57] Soni, R. M.; Trivedi, S. P., Aspects of entanglement entropy for gauge theories, J. High Energy Phys., 01, 136 (2016), [1510.07455] · Zbl 1388.81088
[58] Ghosh, S.; Soni, R. M.; Trivedi, S. P., On the entanglement entropy for gauge theories, J. High Energy Phys., 09, 069 (2015), [1501.02593] · Zbl 1388.81438
[59] Mathur, S. D., Resolving the black hole causality paradox, Gen. Relativity Gravitation, 51, 24 (2019), [1703.03042] · Zbl 1414.83036
[60] Papadodimas, K.; Raju, S., An infalling observer in AdS/CFT, J. High Energy Phys., 10, 212 (2013), [1211.6767]
[61] Bousso, R., Complementarity is not enough, Phys. Rev. D, 87, Article 124023 pp. (2013), [1207.5192]
[62] L. Susskind, The transfer of entanglement: The case for firewalls, 1210.2098.
[63] Nomura, Y.; Varela, J.; Weinberg, S. J., Black holes or firewalls: A theory of horizons, Phys. Rev. D, 88, Article 084052 pp. (2013), [1308.4121]
[64] Nomura, Y.; Varela, J.; Weinberg, S. J., Complementarity endures: No firewall for an infalling observer, J. High Energy Phys., 03, 059 (2013), [1207.6626]
[65] Verlinde, E.; Verlinde, H., Black hole entanglement and quantum error correction, J. High Energy Phys., 10, 107 (2013), [1211.6913] · Zbl 1342.83211
[66] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortschr. Phys., 61, 781-811 (2013), [1306.0533] · Zbl 1338.83057
[67] ’t Hooft, G., On the quantum structure of a black hole, Nuclear Phys. B, 256, 727-745 (1985)
[68] Susskind, L.; Thorlacius, L., Gedanken experiments involving black holes, Phys. Rev. D, 49, 966-974 (1994), [hep-th/9308100]
[69] Susskind, L.; Thorlacius, L.; Uglum, J., The stretched horizon and black hole complementarity, Phys. Rev. D, 48, 3743-3761 (1993), [hep-th/9306069]
[70] Hatfield, B., Quantum Field Theory of Point Particles and Strings (1991), Perseus Books
[71] Haag, R., Local Quantum Physics: Fields, Particles, Algebras (1992), Springer · Zbl 0777.46037
[72] Corvino, J.; Schoen, R. M., On the asymptotics for the vacuum Einstein constraint equations, J. Differential Geom., 73, 185-217 (2006), [gr-qc/0301071] · Zbl 1122.58016
[73] Susskind, L., The world as a hologram, J. Math. Phys., 36, 6377-6396 (1995), [hep-th/9409089] · Zbl 0850.00013
[74] Bousso, R., The holographic principle, Rev. Modern Phys., 74, 825-874 (2002), [hep-th/0203101] · Zbl 1205.83025
[75] Arnowitt, R. L.; Deser, S.; Misner, C. W., The dynamics of general relativity, Gen. Relativity Gravitation, 40, 1997-2027 (2008), [gr-qc/0405109] · Zbl 1152.83320
[76] Regge, T.; Teitelboim, C., Role of surface integrals in the Hamiltonian formulation of general relativity, Ann. Physics, 88, 286 (1974) · Zbl 0328.70016
[77] DeWitt, B. S., Quantum theory of gravity. 1. The canonical theory, Phys. Rev., 160, 1113-1148 (1967) · Zbl 0158.46504
[78] Banerjee, S.; Bryan, J.-W.; Papadodimas, K.; Raju, S., A toy model of black hole complementarity, J. High Energy Phys., 05, 004 (2016), [1603.02812] · Zbl 1388.83176
[79] Streater, R. F.; Wightman, A. S., PCT, Spin and Statistics, and All that (2016), Princeton University Press · Zbl 0135.44305
[80] Marolf, D., Unitarity and holography in gravitational physics, Phys. Rev. D, 79, Article 044010 pp. (2009), [0808.2842]
[81] Marolf, D., Asymptotic flatness, little string theory, and holography, J. High Energy Phys., 03, 122 (2007), [hep-th/0612012]
[82] Marolf, D., Holography without strings?, Classical Quantum Gravity, 31, Article 015008 pp. (2014), [1308.1977] · Zbl 1287.83012
[83] Chowdhury, Chandramouli; Papadoulaki, Olga; Raju, Suvrat, A physical protocol for observers near the boundary to obtain bulk information in quantum gravity, SciPost Phys., 10, 5, 106 (2021), [2008.01740]
[84] G. Compère, A. Fiorucci, Advanced lectures on general relativity, 1801.07064. · Zbl 1419.83003
[85] A. Strominger, Lectures on the infrared structure of gravity and gauge theory, 1703.05448. · Zbl 1408.83003
[86] Ghosh, S.; Raju, S., Loss of locality in gravitational correlators with a large number of insertions, Phys. Rev. D, 96, Article 066033 pp. (2017), [1706.07424]
[87] Strominger, A., On BMS invariance of gravitational scattering, J. High Energy Phys., 07, 152 (2014), [1312.2229] · Zbl 1392.81215
[88] Bondi, H.; van der Burg, M.; Metzner, A., Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. R. Soc. A, 269, 21-52 (1962) · Zbl 0106.41903
[89] Ashtekar, A., Asymptotic quantization of the gravitational field, Phys. Rev. Lett., 46, 573-576 (1981)
[90] Ashtekar, A., Radiative degrees of freedom of the gravitational field in exact general relativity, J. Math. Phys., 22, 2885-2895 (1981)
[91] Ashtekar, A., Asymptotic Quantization: Based on 1984 Naples Lectures (1987), Bibliopolis · Zbl 0621.53064
[92] Ashtekar, A.; Campiglia, M.; Laddha, A., Null infinity, the BMS group and infrared issues, Gen. Relativity Gravitation, 50, 140-163 (2018), [1808.07093] · Zbl 1403.83012
[93] Winicour, J., Massive fields at null infinity, J. Math. Phys., 29, 2117-2121 (1988) · Zbl 0698.53055
[94] Campiglia, M.; Laddha, A., Asymptotic symmetries of gravity and soft theorems for massive particles, J. High Energy Phys., 12, 094 (2015), [1509.01406] · Zbl 1388.83095
[95] Bousso, R.; Chandrasekaran, V.; Halpern, I. F.; Wall, A., Asymptotic charges cannot be measured in finite time, Phys. Rev. D, 97, Article 046014 pp. (2018), [1709.08632]
[96] Bagchi, A.; Fareghbal, R., BMS/GCA redux: Towards flatspace holography from non-relativistic symmetries, J. High Energy Phys., 10, 092 (2012), [1203.5795]
[97] Bagchi, A., Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories, Phys. Rev. Lett., 105, Article 171601 pp. (2010), [1006.3354]
[98] Bagchi, A.; Basu, R.; Grumiller, D.; Riegler, M., Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett., 114, Article 111602 pp. (2015), [1410.4089]
[99] Banerjee, S.; Ghosh, S.; Pandey, P.; Saha, A. P., Modified celestial amplitude in Einstein gravity, J. High Energy Phys., 03, 125 (2020), [1909.03075] · Zbl 1435.83008
[100] Pasterski, S.; Shao, S.-H.; Strominger, A., Flat space amplitudes and conformal symmetry of the celestial sphere, Phys. Rev. D, 96, Article 065026 pp. (2017), [1701.00049]
[101] He, T.; Kapec, D.; Raclariu, A.-M.; Strominger, A., Loop-corrected virasoro symmetry of 4D quantum gravity, J. High Energy Phys., 08, 050 (2017), [1701.00496] · Zbl 1381.83034
[102] Mishra, R. K.; Sundrum, R., Asymptotic symmetries, holography and topological hair, J. High Energy Phys., 01, 014 (2018), [1706.09080] · Zbl 1384.81115
[103] de Boer, J.; Solodukhin, S. N., A holographic reduction of Minkowski space-time, Nuclear Phys. B, 665, 545-593 (2003), [hep-th/0303006] · Zbl 1038.83030
[104] Hawking, S. W.; Perry, M. J.; Strominger, A., Superrotation charge and supertranslation hair on black holes, J. High Energy Phys., 05, 161 (2017), [1611.09175] · Zbl 1380.83143
[105] Hawking, S. W.; Perry, M. J.; Strominger, A., Soft hair on black holes, Phys. Rev. Lett., 116, Article 231301 pp. (2016), [1601.00921]
[106] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Higher-dimensional supertranslations and Weinberg’s soft graviton theorem, Ann. Math. Sci. Appl., 02, 69-94 (2017), [1502.07644] · Zbl 1382.83087
[107] Hollands, S.; Ishibashi, A.; Wald, R. M., BMS supertranslations and memory in four and higher dimensions, Classical Quantum Gravity, 34, Article 155005 pp. (2017), [1612.03290] · Zbl 1373.83033
[108] Aggarwal, A., Supertranslations in higher dimensions revisited, Phys. Rev. D, 99, Article 026015 pp. (2019), [1811.00093]
[109] Campiglia, M.; Coito, L., Asymptotic charges from soft scalars in even dimensions, Phys. Rev. D, 97, Article 066009 pp. (2018), [1711.05773]
[110] He, T.; Mitra, P., Asymptotic symmetries in (d + 2)-dimensional gauge theories, J. High Energy Phys., 10, 277 (2019), [1903.03607] · Zbl 1427.81072
[111] Campiglia, M.; Laddha, A., Sub-subleading soft gravitons: New symmetries of quantum gravity?, Phys. Lett. B, 764, 218-221 (2017), [1605.09094] · Zbl 1369.81111
[112] Sahoo, B.; Sen, A., Classical and quantum results on logarithmic terms in the soft theorem in four dimensions, J. High Energy Phys., 02, 086 (2019), [1808.03288] · Zbl 1411.83029
[113] Jacobson, T.; Nguyen, P., Diffeomorphism invariance and the black hole information paradox, Phys. Rev. D, 100, Article 046002 pp. (2019), [1904.04434]
[114] D. Harlow, H. Ooguri, Symmetries in quantum field theory and quantum gravity, 1810.05338. · Zbl 1472.81208
[115] Ashtekar, A., Black hole evaporation: A perspective from loop quantum gravity, Universe, 6, 21 (2020), [2001.08833]
[116] Bhattacharyya, S.; Minwalla, S., Weak field black hole formation in asymptotically AdS spacetimes, J. High Energy Phys., 09, 034 (2009), [0904.0464]
[117] T. Banks, M.R. Douglas, G.T. Horowitz, E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016.
[118] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini, The entropy of Hawking radiation, 2006.06872. · Zbl 1437.83084
[119] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, J. High Energy Phys., 03, 149 (2020), [1908.10996] · Zbl 1435.83110
[120] Almheiri, A.; Mahajan, R.; Santos, J. E., Entanglement islands in higher dimensions, SciPost Phys., 9, 001 (2020), [1911.09666]
[121] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, J. High Energy Phys., 12, 063 (2019), [1905.08762] · Zbl 1431.83123
[122] J. Sully, M. Van Raamsdonk, D. Wakeham, BCFT entanglement entropy at large central charge and the black hole interior, 2004.13088. · Zbl 1461.81074
[123] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, J. High Energy Phys., 08, 090 (2013), [1304.4926] · Zbl 1342.83185
[124] Engelhardt, N.; Wall, A. C., Quantum extremal surfaces: Holographic entanglement entropy beyond the classical regime, J. High Energy Phys., 01, 073 (2015), [1408.3203]
[125] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, Article 181602 pp. (2006), [hep-th/0603001] · Zbl 1228.83110
[126] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, J. High Energy Phys., 08, 045 (2006), [hep-th/0605073]
[127] Hubeny, V. E.; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, J. High Energy Phys., 07, 062 (2007), [0705.0016]
[128] Headrick, M.; Hubeny, V. E.; Lawrence, A.; Rangamani, M., Causality & holographic entanglement entropy, J. High Energy Phys., 12, 162 (2014), [1408.6300]
[129] Headrick, M., General properties of holographic entanglement entropy, J. High Energy Phys., 03, 085 (2014), [1312.6717]
[130] Faulkner, T.; Lewkowycz, A.; Maldacena, J., Quantum corrections to holographic entanglement entropy, J. High Energy Phys., 11, 074 (2013), [1307.2892] · Zbl 1392.81021
[131] Karch, A.; Randall, L., Locally localized gravity, J. High Energy Phys., 05, 008 (2001), [hep-th/0011156]
[132] Karch, A.; Randall, L., Open and closed string interpretation of SUSY CFT’s on branes with boundaries, J. High Energy Phys., 06, 063 (2001), [hep-th/0105132]
[133] Aharony, O.; DeWolfe, O.; Freedman, D. Z.; Karch, A., Defect conformal field theory and locally localized gravity, J. High Energy Phys., 07, 030 (2003), [hep-th/0303249]
[134] Takayanagi, T., Holographic dual of BCFT, Phys. Rev. Lett., 107, Article 101602 pp. (2011), [1105.5165]
[135] Randall, L.; Sundrum, R., A large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370-3373 (1999), [hep-ph/9905221] · Zbl 0946.81063
[136] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690-4693 (1999), [hep-th/9906064] · Zbl 0946.81074
[137] Geng, H.; Karch, A., Massive islands, J. High Energy Phys., 09, 121 (2020), [2006.02438] · Zbl 1454.83113
[138] Aharony, O.; Clark, A. B.; Karch, A., The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture, Phys. Rev. D, 74, Article 086006 pp. (2006), [hep-th/0608089]
[139] Chen, H. Z.; Myers, R. C.; Neuenfeld, D.; Reyes, I. A.; Sandor, J., Quantum extremal islands made easy, part I: Entanglement on the Brane, J. High Energy Phys., 10, 166 (2020), [2006.04851] · Zbl 1456.81332
[140] Hartman, T.; Maldacena, J., Time evolution of entanglement entropy from black hole interiors, J. High Energy Phys., 05, 014 (2013), [1303.1080] · Zbl 1342.83170
[141] Czech, B.; Karczmarek, J. L.; Nogueira, F.; Van Raamsdonk, M., The gravity dual of a density matrix, Classical Quantum Gravity, 29, Article 155009 pp. (2012), [1204.1330] · Zbl 1248.83029
[142] Dong, X.; Harlow, D.; Wall, A. C., Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett., 117, Article 021601 pp. (2016), [1601.05416]
[143] Geng, Hao; Karch, Andreas; Perez-Pardavila, Carlos; Raju, Suvrat; Randall, Lisa; Riojas, Marcos; Shashi, Sanjit, Information transfer with a gravitating bath, SciPost Phys., 10, 5, 103 (2021), [2012.04671]
[144] Kogan, I. I.; Mouslopoulos, S.; Papazoglou, A., A new bigravity model with exclusively positive branes, Phys. Lett. B, 501, 140-149 (2001), [hep-th/0011141] · Zbl 0972.83055
[145] Akal, I.; Kusuki, Y.; Takayanagi, T.; Wei, Z., Codimension two holography for wedges, Phys. Rev. D, 102, Article 126007 pp. (2020), [2007.06800]
[146] C. Krishnan, V. Patil, J. Pereira, Page curve and the information paradox in flat space, 2005.02993.
[147] Hashimoto, K.; Iizuka, N.; Matsuo, Y., Islands in Schwarzschild black holes, J. High Energy Phys., 06, 085 (2020), [2004.05863] · Zbl 1437.83060
[148] Gautason, F. F.; Schneiderbauer, L.; Sybesma, W.; Thorlacius, L., Page curve for an evaporating black hole, J. High Energy Phys., 05, 091 (2020), [2004.00598] · Zbl 1437.83080
[149] M. Alishahiha, A. Faraji Astaneh, A. Naseh, Island in the presence of higher derivative terms, 2005.08715. · Zbl 1460.83062
[150] Hawking, S.; Page, D. N., Thermodynamics of black holes in anti-de sitter space, Comm. Math. Phys., 87, 577 (1983)
[151] Papadodimas, K.; Raju, S., Local operators in the eternal black hole, Phys. Rev. Lett., 115, Article 211601 pp. (2015), [1502.06692]
[152] Maldacena, J. M., Eternal black holes in anti-de Sitter, J. High Energy Phys., 04, 021 (2003), [hep-th/0106112]
[153] Israel, W., Thermo field dynamics of black holes, Phys. Lett. A, 57, 107-110 (1976)
[154] S.G. Avery, B.D. Chowdhury, No holography for eternal AdS black holes, 1312.3346.
[155] S.D. Mathur, What is the dual of two entangled CFTs?, 1402.6378.
[156] Gao, P.; Jafferis, D. L.; Wall, A. C., Traversable wormholes via a double trace deformation, J. High Energy Phys., 12, 151 (2017), [1608.05687] · Zbl 1383.83054
[157] Marolf, D.; Wall, A. C., Eternal black holes and superselection in AdS/CFT, Classical Quantum Gravity, 30, Article 025001 pp. (2013), [1210.3590] · Zbl 1263.83100
[158] Berti, E.; Cardoso, V.; Starinets, A. O., Quasinormal modes of black holes and black branes, Classical Quantum Gravity, 26, Article 163001 pp. (2009), [0905.2975] · Zbl 1173.83001
[159] Kokkotas, K. D.; Schmidt, B. G., Quasinormal modes of stars and black holes, Living Rev. Rel., 2, 2 (1999), [gr-qc/9909058] · Zbl 0984.83002
[160] Horowitz, G. T.; Hubeny, V. E., Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D, 62, Article 024027 pp. (2000), [hep-th/9909056]
[161] Banerjee, P.; Gaikwad, A.; Kaushal, A.; Mandal, G., Quantum quench and thermalization to GGE in arbitrary dimensions and the odd-even effect, J. High Energy Phys., 09, 027 (2020), [1910.02404]
[162] Mandal, G.; Paranjape, S.; Sorokhaibam, N., Thermalization in 2D critical quench and UV/IR mixing, J. High Energy Phys., 01, 027 (2018), [1512.02187] · Zbl 1384.81113
[163] Kulkarni, M.; Mandal, G.; Morita, T., Quantum quench and thermalization of one-dimensional Fermi gas via phase space hydrodynamics, Phys. Rev. A, 98, Article 043610 pp. (2018), [1806.09343]
[164] Barbon, J.; Rabinovici, E., Long time scales and eternal black holes, NATO Sci. Ser. II, 208, 255-263 (2006), [hep-th/0403268] · Zbl 1084.83020
[165] Barbon, J.; Rabinovici, E., Very long time scales and black hole thermal equilibrium, J. High Energy Phys., 11, 047 (2003), [hep-th/0308063]
[166] Fitzpatrick, A. L.; Kaplan, J., On the late-time behavior of virasoro blocks and a classification of semiclassical saddles, J. High Energy Phys., 04, 072 (2017), [1609.07153] · Zbl 1378.81115
[167] Chen, H.; Fitzpatrick, A. L.; Kaplan, J.; Li, D.; Wang, J., Degenerate operators and the \(1 / c\) expansion: Lorentzian resummations, high order computations, and super-virasoro blocks, J. High Energy Phys., 03, 167 (2017), [1606.02659] · Zbl 1377.81162
[168] Anous, T.; Hartman, T.; Rovai, A.; Sonner, J., Black hole collapse in the 1/c expansion, J. High Energy Phys., 07, 123 (2016), [1603.04856] · Zbl 1390.83170
[169] Cotler, J. S.; Gur-Ari, G.; Hanada, M.; Polchinski, J.; Saad, P.; Shenker, S. H., Black holes and random matrices, J. High Energy Phys., 05, 118 (2017), [1611.04650] · Zbl 1380.81307
[170] Sonner, J.; Vielma, M., Eigenstate thermalization in the Sachdev-Ye-Kitaev model, J. High Energy Phys., 11, 149 (2017), [1707.08013] · Zbl 1383.81258
[171] Marolf, D., Black holes, AdS, and CFTs, Gen. Relativity Gravitation, 41, 903-917 (2009), [0810.4886] · Zbl 1177.83089
[172] Hsu, S. D.; Reeb, D., Unitarity and the Hilbert space of quantum gravity, Classical Quantum Gravity, 25, Article 235007 pp. (2008), [0803.4212] · Zbl 1155.83339
[173] Wheeler, J. A., Geometrodynamics and the Issue of the Final State, in Relativity, Groups and Topology, Vol. 317 (1964), Gordon and Breach
[174] K. Papadodimas, A class of non-equilibrium states and the black hole interior, 1708.06328.
[175] de Boer, J.; Van Breukelen, R.; Lokhande, S. F.; Papadodimas, K.; Verlinde, E., On the interior geometry of a typical black hole microstate, J. High Energy Phys., 05, 010 (2019), [1804.10580] · Zbl 1416.83047
[176] J. Chakravarty, Overcounting of interior excitations: A resolution to the bags of gold paradox in AdS, 2010.03575. · Zbl 1460.83090
[177] Chakravarty, J.; Raju, S., How do black holes manage to look larger from the inside than the outside (2020), Essay written for the gravity research foundation (unpublished)
[178] Papadodimas, K.; Raju, S., Black hole interior in the holographic correspondence and the information paradox, Phys. Rev. Lett., 112, Article 051301 pp. (2014), [1310.6334]
[179] E. Verlinde, H. Verlinde, Passing through the Firewall, 1306.0515. · Zbl 0990.83549
[180] E. Verlinde, H. Verlinde, Behind the horizon in AdS/CFT, 1311.1137. · Zbl 0990.83549
[181] Bena, I., On the construction of local fields in the bulk of AdS(5) and other spaces, Phys. Rev. D, 62, Article 066007 pp. (2000), [hep-th/9905186]
[182] Hamilton, A.; Kabat, D. N.; Lifschytz, G.; Lowe, D. A., Local bulk operators in AdS/CFT and the fate of the BTZ singularity, AMS/IP Stud. Adv. Math., 44, 85-100 (2008), [0710.4334] · Zbl 1165.81352
[183] Hamilton, A.; Kabat, D. N.; Lifschytz, G.; Lowe, D. A., Local bulk operators in AdS/CFT: A holographic description of the black hole interior, Phys. Rev. D, 75, Article 106001 pp. (2007), [hep-th/0612053]
[184] Hamilton, A.; Kabat, D. N.; Lifschytz, G.; Lowe, D. A., Local bulk operators in AdS/CFT: A boundary view of horizons and locality, Phys. Rev. D, 73, Article 086003 pp. (2006), [hep-th/0506118]
[185] Hamilton, A.; Kabat, D. N.; Lifschytz, G.; Lowe, D. A., Holographic representation of local bulk operators, Phys. Rev. D, 74, Article 066009 pp. (2006), [hep-th/0606141]
[186] de Mello Koch, R.; Jevicki, A.; Jin, K.; Rodrigues, J. P., \( A d S_4 / C F T_3\) Construction from collective fields, Phys. Rev. D, 83, Article 025006 pp. (2011), [1008.0633]
[187] Jevicki, A.; Yoon, J., Bulk from bi-locals in thermo field CFT, J. High Energy Phys., 02, 090 (2016), [1503.08484] · Zbl 1388.83271
[188] N. Kajuri, Lectures on bulk reconstruction, 2003.00587.
[189] Morrison, I. A., Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography, J. High Energy Phys., 05, 053 (2014), [1403.3426]
[190] Banerjee, S.; Papadodimas, K.; Raju, S.; Samantray, P.; Shrivastava, P., A bound on thermal relativistic correlators at large spacelike momenta, SciPost Phys., 8, 064 (2020), [1902.07203]
[191] El-Showk, S.; Papadodimas, K., Emergent spacetime and holographic CFTs, J. High Energy Phys., 10, 106 (2012), [1101.4163]
[192] Ghosh, S.; Raju, S., Quantum information measures for restricted sets of observables, Phys. Rev. D, 98, Article 046005 pp. (2018), [1712.09365]
[193] Almheiri, A.; Dong, X.; Harlow, D., Bulk locality and quantum error correction in AdS/CFT, J. High Energy Phys., 04, 163 (2015), [1411.7041] · Zbl 1388.81095
[194] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, J. High Energy Phys., 06, 149 (2015), [1503.06237] · Zbl 1388.81094
[195] Bousso, R., Violations of the equivalence principle by a nonlocally reconstructed vacuum at the black hole horizon, Phys. Rev. Lett., 112, Article 041102 pp. (2014), [1308.3697]
[196] Takesaki, M., Tomita’s Theory of Modular Hilbert Algebras and Its Applications (2006), Springer · Zbl 0285.46050
[197] D.L. Jafferis, L. Lamprou, Inside the hologram: Reconstructing the bulk observer’s experience, 2009.04476.
[198] Harlow, D., Aspects of the Papadodimas-Raju proposal for the black hole interior, J. High Energy Phys., 11, 055 (2014), [1405.1995] · Zbl 1333.83091
[199] I. Kourkoulou, J. Maldacena, Pure states in the SYK model and nearly-\( A d S_2\) gravity, 1707.02325.
[200] Guica, M.; Ross, S. F., Behind the geon horizon, Classical Quantum Gravity, 32, Article 055014 pp. (2015), [1412.1084] · Zbl 1309.83013
[201] De Boer, J.; Van Breukelen, R.; Lokhande, S. F.; Papadodimas, K.; Verlinde, E., Probing typical black hole microstates, J. High Energy Phys., 01, 062 (2020), [1901.08527] · Zbl 1434.83059
[202] Heemskerk, I.; Marolf, D.; Polchinski, J.; Sully, J., Bulk and transhorizon measurements in AdS/CFT, J. High Energy Phys., 10, 165 (2012), [1201.3664]
[203] Almheiri, A.; Anous, T.; Lewkowycz, A., Inside out: meet the operators inside the horizon. On bulk reconstruction behind causal horizons, J. High Energy Phys., 01, 028 (2018), [1707.06622] · Zbl 1384.81089
[204] Nomura, Y., Reanalyzing an evaporating black hole, Phys. Rev. D, 99, Article 086004 pp. (2019), [1810.09453]
[205] Nomura, Y., Interior of a unitarily evaporating black hole, Phys. Rev. D, 102, Article 026001 pp. (2020), [1911.13120]
[206] Nomura, Y., Spacetime and universal soft modes — Black holes and beyond, Phys. Rev. D, 101, Article 066024 pp. (2020), [1908.05728]
[207] Y. Nomura, Black Hole Interior in Unitary Gauge Construction, 2010.15827.
[208] Freivogel, B.; Jefferson, R.; Kabir, L.; Yang, I.-S., Geometry of the infalling causal patch, Phys. Rev. D, 91, Article 044036 pp. (2015), [1406.6043]
[209] van Breukelen, R., Black hole state dependence as a single parameter, J. High Energy Phys., 04, 210 (2020), [1910.00036] · Zbl 1436.83047
[210] Vaidya, P. C., The gravitational field of a radiating star, Proc. Indian Acad. Sci. A, 33, 264 (1951) · Zbl 0044.42202
[211] Datt, B., On a class of solutions of the gravitation equations of relativity, Gen. Relativity Gravitation, 31, 1619-1627 (1999) · Zbl 0955.83043
[212] Oppenheimer, J. R.; Snyder, H., On continued gravitational contraction, Phys. Rev., 56, 455 (1939) · Zbl 0022.28104
[213] Hutchinson, J.; Stojkovic, D., Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole, Classical Quantum Gravity, 33, Article 135006 pp. (2016), [1307.5861] · Zbl 1346.83040
[214] Berenstein, D.; Miller, A., Can topology and geometry be measured by an operator measurement in quantum gravity?, Phys. Rev. Lett., 118, Article 261601 pp. (2017), [1605.06166]
[215] Berenstein, D.; Miller, A., Superposition induced topology changes in quantum gravity, J. High Energy Phys., 11, 121 (2017), [1702.03011] · Zbl 1383.83026
[216] Jafferis, D. L.; Suh, S. J., The gravity duals of modular Hamiltonians, J. High Energy Phys., 09, 068 (2016), [1412.8465] · Zbl 1390.83115
[217] Guica, M.; Jafferis, D. L., On the construction of charged operators inside an eternal black hole, SciPost Phys., 3, 016 (2017), [1511.05627]
[218] D.L. Jafferis, Bulk reconstruction and the Hartle-Hawking wavefunction, 1703.01519.
[219] Jefferson, R., Comments on black hole interiors and modular inclusions, SciPost Phys., 6, 042 (2019), [1811.08900]
[220] Bzowski, A.; Gnecchi, A.; Hertog, T., Interactions resolve state-dependence in a toy-model of AdS black holes, J. High Energy Phys., 06, 167 (2018), [1802.02580] · Zbl 1395.83026
[221] Faulkner, T.; Lewkowycz, A., Bulk locality from modular flow, J. High Energy Phys., 07, 151 (2017), [1704.05464] · Zbl 1380.81313
[222] Hayden, P.; Penington, G., Learning the alpha-bits of black holes, J. High Energy Phys., 12, 007 (2019), [1807.06041] · Zbl 1431.83095
[223] Van Raamsdonk, M., Building up spacetime with quantum entanglement, Gen. Relativity Gravitation, 42, 2323-2329 (2010), [1005.3035] · Zbl 1200.83052
[224] Van Raamsdonk, M., A patchwork description of dual spacetimes in AdS/CFT, Classical Quantum Gravity, 28, Article 065002 pp. (2011) · Zbl 1211.83017
[225] Preskill, J., Lecture Notes for Physics 229: Quantum Information and Computation (1998), California Institute of Technology
[226] A. Kapustin, Is there life beyond Quantum Mechanics?, 1303.6917.
[227] Gisin, N., Weinberg’s non-linear quantum mechanics and supraluminal communications, Phys. Lett. A, 143, 1-2 (1990)
[228] Polchinski, J., Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox, Phys. Rev. Lett., 66, 397-400 (1991) · Zbl 0968.81504
[229] Gundlach, C.; Martin-Garcia, J. M., Critical phenomena in gravitational collapse, Living Rev. Rel., 10, 5 (2007), [0711.4620] · Zbl 1175.83037
[230] Hanada, M.; Maltz, J., A proposal of the gauge theory description of the small Schwarzschild black hole in AdS \({}_5 \times\) s \({}^5\), J. High Energy Phys., 02, 012 (2017), [1608.03276] · Zbl 1377.83046
[231] Page, D. N., Time dependence of Hawking radiation entropy, J. Cosmol. Astropart. Phys., 09, 028 (2013), [1301.4995]
[232] Lunin, O.; Mathur, S. D., Metric of the multiply wound rotating string, Nuclear Phys. B, 610, 49-76 (2001), [hep-th/0105136] · Zbl 0971.83066
[233] Lunin, O.; Mathur, S. D.; Saxena, A., What is the gravity dual of a chiral primary?, Nuclear Phys. B, 655, 185-217 (2003), [hep-th/0211292] · Zbl 1009.83037
[234] Bena, I.; Giusto, S.; Martinec, E. J.; Russo, R.; Shigemori, M.; Turton, D., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett., 117, Article 201601 pp. (2016), [1607.03908]
[235] Bena, I.; Giusto, S.; Russo, R.; Shigemori, M.; Warner, N. P., Habemus Superstratum! A constructive proof of the existence of superstrata, J. High Energy Phys., 05, 110 (2015), [1503.01463] · Zbl 1388.83739
[236] Bena, I.; Giusto, S.; Martinec, E. J.; Russo, R.; Shigemori, M.; Turton, D., Asymptotically-flat supergravity solutions deep inside the black-hole regime, J. High Energy Phys., 02, 014 (2018), [1711.10474] · Zbl 1387.83096
[237] Bena, I.; Warner, N. P., Black holes, black rings and their microstates, Lecture Notes in Phys., 755, 1-92 (2008), [hep-th/0701216] · Zbl 1155.83301
[238] I. Bena, N.P. Warner, Resolving the structure of black holes: Philosophizing with a Hammer, 1311.4538.
[239] Tyukov, A.; Walker, R.; Warner, N. P., Tidal stresses and energy gaps in microstate geometries, J. High Energy Phys., 02, 122 (2018), [1710.09006] · Zbl 1387.83092
[240] Casati, G.; Chirikov, B.; Guarneri, I., Energy-level statistics of integrable quantum systems, Phys. Rev. Lett., 54, 1350 (1985)
[241] Berry, M. V.; Tabor, M., Level clustering in the regular spectrum, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 356, 375-394 (1977) · Zbl 1119.81395
[242] Giddings, S. B., Nonviolent nonlocality, Phys. Rev. D, 88, Article 064023 pp. (2013), [1211.7070]
[243] Giddings, S. B., Searching for quantum black hole structure with the Event Horizon Telescope, Universe, 5, 201 (2019), [1904.05287]
[244] Kumar, V., Examining Nonviolent Nonlocality (2020), ICTS-TIFR, (M.Sc. thesis)
[245] Giddings, S. B., Nonviolent unitarization: basic postulates to soft quantum structure of black holes, J. High Energy Phys., 12, 047 (2017), [1701.08765] · Zbl 1383.83055
[246] Iyer, B. R.; Vishveshwara, C., The vaidya solution in higher dimensions, Pramana, 32, 749-752 (1989)
[247] ’t Hooft, G., The scattering matrix approach for the quantum black hole: An overview, Internat. J. Modern Phys. A, 11, 4623-4688 (1996), [gr-qc/9607022] · Zbl 1044.81683
[248] Aharony, O.; Gubser, S. S.; Maldacena, J. M.; Ooguri, H.; Oz, Y., Large N field theories, string theory and gravity, Phys. Rep., 323, 183-386 (2000), [hep-th/9905111] · Zbl 1368.81009
[249] D’Hoker, E.; Freedman, D. Z., Supersymmetric gauge theories and the AdS / CFT correspondence, (Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2001): Strings, Branes and Extra Dimensions, vol. 1 (2002)), 3-158, [hep-th/0201253] · Zbl 1077.81074
[250] Christensen, S.; Duff, M., Quantizing gravity with a cosmological constant, Nuclear Phys. B, 170, 480-506 (1980) · Zbl 0967.83510
[251] Balasubramanian, V.; Kraus, P., A stress tensor for Anti-de Sitter gravity, Comm. Math. Phys., 208, 413-428 (1999), [hep-th/9902121] · Zbl 0946.83013
[252] de Haro, S.; Solodukhin, S. N.; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence, Comm. Math. Phys., 217, 595-622 (2001), [hep-th/0002230] · Zbl 0984.83043
[253] Grant, L.; Maoz, L.; Marsano, J.; Papadodimas, K.; Rychkov, V. S., Minisuperspace quantization of ‘Bubbling AdS’ and free fermion droplets, J. High Energy Phys., 08, 025 (2005), [hep-th/0505079]
[254] Mandal, G., Fermions from half-BPS supergravity, J. High Energy Phys., 08, 052 (2005), [hep-th/0502104]
[255] Maldacena, J. M.; Ooguri, H., Strings in AdS(3) and SL(2, R) WZW model 1.: The spectrum, J. Math. Phys., 42, 2929-2960 (2001), [hep-th/0001053] · Zbl 1036.81033
[256] Mandal, G.; Raju, S.; Smedbäck, M., Supersymmetric giant graviton solutions in AdS \({}_3\), Phys. Rev. D, 77, 46011 (2008), [0709.1168]
[257] Ashok, S. K.; Suryanarayana, N. V., Counting wobbling dual-giants, J. High Energy Phys., 05, 090 (2009), [0808.2042]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.