×

Global existence and decay of the inhomogeneous Muskat problem with Lipschitz initial data. (English) Zbl 1503.35147

The paper deals with the inhomogeneous Muskat problem, which is a free-boundary problem modeling the evolution of an internal wave at the interface between two incompressible homogeneous fluids filling an inhomogeneous porous medium where the permeability is a step function. The main goal is to study the long-time dynamics of the Lipschitz norm of smooth solutions (typically in \(H^3\)): the authors prove that, for some specific initial data, such solutions decay exponentially fast in \(W^{1, \infty}\) towards the equilibrium state. Moreover, the authors provide the global existence of solutions with Lipschitz regularity and detect the evolution in time of such Lipschitz solutions, which are showed to decay. Since some solutions to the Muskat problem experience turning singularities (finite time blow up of the derivative of the interface) and splash singularities (self intersection of the interface), the Lipschitz class is particularly relevant for such problem.

MSC:

35Q35 PDEs in connection with fluid mechanics
35R35 Free boundary problems for PDEs
76B07 Free-surface potential flows for incompressible inviscid fluids
76B55 Internal waves for incompressible inviscid fluids
76S05 Flows in porous media; filtration; seepage
35B45 A priori estimates in context of PDEs
35B50 Maximum principles in context of PDEs
35B44 Blow-up in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Alazard, T.; Lazar, O., Paralinearization of the Muskat equation and application to the Cauchy problem, Arch. Ration. Mech. Anal., 237, 545-583 (2020) · Zbl 1437.35563 · doi:10.1007/s00205-020-01514-6
[2] Alazard, T.; Nguyen, Q-H, Endpoint Sobolev theory for the Muskat equation (2020)
[3] Alazard, T.; Nguyen, Q-H, On the Cauchy problem for the Muskat equation: II. Critical initial data, Ann. PDE, 7, 7 (2021) · Zbl 1473.35430 · doi:10.1007/s40818-021-00099-x
[4] Alazard, T.; Nguyen, Q-H, On the Cauchy problem for the Muskat equation with non-Lipschitz initial data, Commun. PDE, 46, 1-42 (2021) · Zbl 1477.35151 · doi:10.1080/03605302.2021.1928700
[5] Alazard, T.; Nguyen, Q-H, Quasilinearization of the 3D Muskat equation, and applications to the critical Cauchy problem (2021)
[6] Ambrose, D. M., Well-posedness of two-phase Hele-Shaw flow without surface tension, Eur. J. Appl. Math., 15, 597-607 (2004) · Zbl 1076.76027 · doi:10.1017/s0956792504005662
[7] Ambrose, D. M., The zero surface tension limit of two-dimensional interfacial Darcy flow, J. Math. Fluid Mech., 16, 105-143 (2014) · Zbl 1308.76260 · doi:10.1007/s00021-013-0146-1
[8] Berselli, L. C.; Córdoba, D.; Granero-Belinchón, R., Local solvability and turning for the inhomogeneous Muskat problem, Interfaces Free Boundaries, 16, 175-213 (2014) · Zbl 1295.35385 · doi:10.4171/ifb/317
[9] Cameron, S., Global well-posedness for the two-dimensional Muskat problem with slope less than 1, Anal. PDE, 12, 997-1022 (2018) · Zbl 1403.35127 · doi:10.2140/apde.2019.12.997
[10] Cameron, S., Eventual regularization for the 3D Muskat problem: Lipschitz for finite time implies global existence (2020)
[11] Cameron, S., Global wellposedness for the 3D Muskat problem with medium size slope (2020)
[12] Castro, Á.; Córdoba, D.; Fefferman, C.; Gancedo, F., Breakdown of smoothness for the Muskat problem, Arch. Ration. Mech. Anal., 208, 805-909 (2013) · Zbl 1293.35234 · doi:10.1007/s00205-013-0616-x
[13] Castro, Á.; Córdoba, D.; Fefferman, C.; Gancedo, F.; López-Fernández, M. i., Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Ann. Math., 175, 909-948 (2012) · Zbl 1267.76033 · doi:10.4007/annals.2012.175.2.9
[14] Castro, A.; Córdoba, D.; Fefferman, C.; Gancedo, F., Splash singularities for the one-phase Muskat problem in stable regimes, Arch. Ration. Mech. Anal., 222, 213-243 (2016) · Zbl 1350.35151 · doi:10.1007/s00205-016-0999-6
[15] Chen, K.; Nguyen, Q-H; Xu, Y., The Muskat problem with C^1 data (2021)
[16] Cheng, C. H A.; Granero-Belinchón, R.; Shkoller, S., Well-posedness of the Muskat problem with H^2 initial data, Adv. Math., 286, 32-104 (2016) · Zbl 1331.35396 · doi:10.1016/j.aim.2015.08.026
[17] Constantin, P.; Córdoba, D.; Gancedo, F.; Rodríguez-Piazza, L.; Strain, R. M., On the Muskat problem: global in time results in 2D and 3D, Am. J. Math., 138, 1455-1494 (2016) · Zbl 1369.35053 · doi:10.1353/ajm.2016.0044
[18] Constantin, P.; Córdoba, D.; Gancedo, F.; Strain, R. M., On the global existence for the Muskat problem, J. Eur. Math. Soc., 15, 201-227 (2012) · Zbl 1258.35002 · doi:10.4171/jems/360
[19] Constantin, P.; Gancedo, F.; Shvydkoy, R.; Vicol, V., Global regularity for 2D Muskat equations with finite slope, Ann. Inst. Henri Poincare, 34, 1041-1074 (2017) · Zbl 1365.76304 · doi:10.1016/j.anihpc.2016.09.001
[20] Córdoba, A.; Córdoba, D.; Gancedo, F., Interface evolution: the Hele-Shaw and Muskat problems, Ann. Math., 173, 477-542 (2011) · Zbl 1229.35204 · doi:10.4007/annals.2011.173.1.10
[21] Córdoba, A.; Córdoba, D.; Gancedo, F., Porous media: the Muskat problem in three dimensions, Anal. PDE, 6, 447-497 (2013) · Zbl 1273.35221 · doi:10.2140/apde.2013.6.447
[22] Córdoba, D.; Gancedo, F., Contour dynamics of incompressible 3D fluids in a porous medium with different densities, Commun. Math. Phys., 273, 445-471 (2007) · Zbl 1120.76064 · doi:10.1007/s00220-007-0246-y
[23] Córdoba, D.; Gancedo, F., A maximum principle for the Muskat problem for fluids with different densities, Commun. Math. Phys., 286, 681-696 (2009) · Zbl 1173.35637 · doi:10.1007/s00220-008-0587-1
[24] Córdoba, D.; Gómez-Serrano, J.; Zlatoš, A., A note on stability shifting for the Muskat problem, Phil. Trans. R. Soc. A, 373, 20140278 (2015) · Zbl 1353.76084 · doi:10.1098/rsta.2014.0278
[25] Córdoba, D.; Gómez-Serrano, J.; Zlatoš, A., A note on stability shifting for the Muskat problem: II. From stable to unstable and back to stable, Anal. PDE, 10, 367-378 (2017) · Zbl 1360.35171 · doi:10.2140/apde.2017.10.367
[26] Córdoba, D.; Lazar, O., Global well-posedness for the 2D stable Muskat problem in H^3/2 (2018)
[27] Córdoba Gazolaz, D.; Granero-Belinchón, R.; Orive-Illera, R., The confined Muskat problem: differences with the deep water regime, Commun. Math. Sci., 12, 423-455 (2014) · Zbl 1301.35102 · doi:10.4310/cms.2014.v12.n3.a2
[28] Escher, J.; Matioc, A-V; Matioc, B-V, A generalized Rayleigh-Taylor condition for the Muskat problem, Nonlinearity, 25, 73 (2011) · Zbl 1243.35179 · doi:10.1088/0951-7715/25/1/73
[29] Escher, J.; Matioc, B-V, On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results, Z. Anal. Anwend., 30, 193-218 (2011) · Zbl 1223.35199 · doi:10.4171/zaa/1431
[30] Escher, J.; Matioc, B-V; Walker, C., The domain of parabolicity for the Muskat problem, Indiana Univ. Math. J., 67, 679-737 (2018) · Zbl 1402.35318 · doi:10.1512/iumj.2018.67.7263
[31] Gancedo, F., A survey for the Muskat problem and a new estimate, SeMA J., 74, 21-35 (2017) · Zbl 1384.35084 · doi:10.1007/s40324-016-0078-9
[32] Gancedo, F.; García-Juárez, E.; Patel, N.; Strain, R. M., On the Muskat problem with viscosity jump: global in time results, Adv. Math., 345, 552-597 (2019) · Zbl 1410.35117 · doi:10.1016/j.aim.2019.01.017
[33] Gancedo, F.; Granero-Belinchón, R.; Scrobogna, S., Global existence in the Lipschitz class for the N-Peskin problem, Indiana Univ. Math. J. (2020)
[34] Gancedo, F.; Granero-Belinchón, R.; Scrobogna, S., Surface tension stabilization of the Rayleigh-Taylor instability for a fluid layer in a porous medium, Ann. Inst. Henri Poincare C, 37, 1299-1343 (2020) · Zbl 1459.76053 · doi:10.1016/j.anihpc.2020.04.005
[35] Gancedo, F.; Lazar, O., Global well-posedness for the 3D Muskat problem in the critical Sobolev space (2020)
[36] Gómez-Serrano, J.; Granero-Belinchón, R., On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof, Nonlinearity, 27, 1471 (2014) · Zbl 1298.76178 · doi:10.1088/0951-7715/27/6/1471
[37] Granero-Belinchón, R., Global existence for the confined Muskat problem, SIAM J. Math. Anal., 46, 1651-1680 (2014) · Zbl 1298.35143 · doi:10.1137/130912529
[38] Granero-Belinchón, R.; Lazar, O., Growth in the Muskat problem, Math. Model Nat. Phenom., 15, 7 (2020) · Zbl 1473.35442 · doi:10.1051/mmnp/2019021
[39] Granero-Belinchón, R.; Shkoller, S., Well-posedness and decay to equilibrium for the Muskat problem with discontinuous permeability, Trans. Am. Math. Soc., 372, 2255-2286 (2019) · Zbl 1420.35475 · doi:10.1090/tran/7335
[40] Matioc, A-V; Matioc, B-V, Well-posedness and stability results for a quasilinear periodic Muskat problem, J. Differ. Equ., 266, 5500-5531 (2019) · Zbl 1417.35135 · doi:10.1016/j.jde.2018.10.038
[41] Matioc, B-V, Viscous displacement in porous media: the Muskat problem in 2D, Trans. Am. Math. Soc., 370, 7511-7556 (2018) · Zbl 1403.35333 · doi:10.1090/tran/7287
[42] Nguyen, H. Q.; Pausader, B., A paradifferential approach for well-posedness of the Muskat problem, Arch. Ration. Mech. Anal., 237, 35-100 (2020) · Zbl 1437.35588 · doi:10.1007/s00205-020-01494-7
[43] Patel, N.; Shankar, N., Global results for the inhomogeneous Muskat problem (2021)
[44] Patel, N.; Strain, R. M., Large time decay estimates for the Muskat equation, Commun. PDE, 42, 977-999 (2017) · Zbl 1378.35245 · doi:10.1080/03605302.2017.1321661
[45] Pernas-Castaño, T., Local-existence for the inhomogeneous Muskat problem, Nonlinearity, 30, 2063 (2017) · Zbl 1365.76310 · doi:10.1088/1361-6544/aa6691
[46] Jan, P.; Simonett, G., On the Muskat flow, Evol. Equ. Control Theor., 5, 631-645 (2016) · Zbl 1351.35271 · doi:10.3934/eect.2016022
[47] Siegel, M.; Caflisch, R. E.; Howison, S., Global existence, singular solutions, and ill-posedness for the Muskat problem, Commun. Pure Appl. Math., 57, 1374-1411 (2004) · Zbl 1062.35089 · doi:10.1002/cpa.20040
[48] Simon, J., Compact sets in the space L^p(0, t; B), Ann. Mat. Pura Appl., 146, 65-96 (1986) · Zbl 0629.46031 · doi:10.1007/bf01762360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.