×

Minkowski’s inequality for the AB-fractional integral operator. (English) Zbl 1499.26135

Summary: Recently, AB-fractional calculus has been introduced by Atangana and Baleanu and attracted a large number of scientists in different scientific fields for the exploration of diverse topics. An interesting aspect is the generalization of classical inequalities via AB-fractional integral operators. In this paper, we aim to generalize Minkowski inequality using the AB-fractional integral operator.

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals

References:

[1] Baleanu, D., Khan, H., Jafari, H., Khan, R.A., Alipour, M.: On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions. Adv. Differ. Equ. 2015(1), 318 (2015) · Zbl 1422.34021 · doi:10.1186/s13662-015-0651-z
[2] Baleanu, D., Mustafa, O.G., Agarwal, P.R.: An existence result for a superlinear fractional differential equation. Appl. Math. Lett. 23(9), 1129-1132 (2010) · Zbl 1200.34004 · doi:10.1016/j.aml.2010.04.049
[3] Baleanu, D., Mustafa, O.G., Agarwal, R.P.: On the solution set for a class of sequential fractional differential equations. J. Phys. A, Math. Theor. 43(38), 385209 (2010) · Zbl 1216.34004 · doi:10.1088/1751-8113/43/38/385209
[4] Baleanu, D., Agarwal, R.P., Khan, H., Khan, R.A., Jafari, H.: On the existence of solution for fractional differential equations of order 3<δ≤\(43 < \delta \leq 4\). Adv. Differ. Equ. 2015, 362 (2015) · Zbl 1422.34020 · doi:10.1186/s13662-015-0686-1
[5] Baleanu, D., Agarwal, R.P., Mohammadi, H., Rezapour, S.: Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 2013, 112 (2013) · Zbl 1301.34007 · doi:10.1186/1687-2770-2013-112
[6] Agarwal, P., Jleli, M., Tomar, M.: Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017(1), 55 (2017) · Zbl 1359.26005 · doi:10.1186/s13660-017-1318-y
[7] Aldhaifallah, M., Tomar, M., Nisar, K.S., Purohit, S.D.: Some new inequalities for (k,s)\((k, s)\)-fractional integrals. J. Nonlinear Sci. Appl. 9, 5374-5381 (2016) · Zbl 1374.26012 · doi:10.22436/jnsa.009.09.06
[8] Set, E., Noor, M.A., Awan, M.U., Gzpinar, A.: Generalized Hermite-Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 2017, 169 (2017) · Zbl 1370.26053 · doi:10.1186/s13660-017-1444-6
[9] Khan, H., Tunç, C., Alkhazan, A., Ameen, B., Khan, A.: A generalization of Minkowski’s inequality by Hahn integral operator. J. Taibah Univ. Sci. 12(5), 506-513 (2018) · doi:10.1080/16583655.2018.1493859
[10] Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444-462 (2018) · Zbl 1510.34004 · doi:10.1016/j.cnsns.2017.12.003
[11] Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10(3), 1098-1107 (2017) · Zbl 1412.47086 · doi:10.22436/jnsa.010.03.20
[12] Abdeljawad, T.: A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2017, 130 (2017). https://doi.org/10.1186/s13660-017-1400-5 · Zbl 1368.26003 · doi:10.1186/s13660-017-1400-5
[13] Abdeljawad, T., Baleanu, D.: On fractional derivatives with generalized Mittag-Leffler kernels. Adv. Differ. Equ. 2018, 468 (2018) · Zbl 1448.33019 · doi:10.1186/s13662-018-1914-2
[14] Abdeljawad, T.: Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals. Chaos 29, 023102 (2019). https://doi.org/10.1063/1.5085726 · Zbl 1409.26003 · doi:10.1063/1.5085726
[15] Khan, H., Tunç, C., Baleanu, D., Khan, A., Alkhazzan, A.: Inequalities for n-class of functions using the Saigo fractional integral operator. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 1-4 (2019, to appear). https://doi.org/10.1007/s13398-019-00624-5 · Zbl 1437.52005
[16] Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 117, 16-20 (2021) · Zbl 1442.34016 · doi:10.1016/j.chaos.2018.10.006
[17] Adjabi, Y., Jarad, F., Abdeljawad, T.: On generalized fractional operators and a Gronwall type inequality with applications. Filomat 31(17), 5457-5473 (2017) · Zbl 1499.26088 · doi:10.2298/FIL1717457A
[18] Shuang, Y., Qi, F.: Integral inequalities of Hermite-Hadamard type for extended s-convex functions and applications. Mathematics 6(11), 223 (2018) · Zbl 1404.26025 · doi:10.3390/math6110223
[19] Mehrez, K., Agarwal, P.: New Hermite-Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 350, 274-285 (2019) · Zbl 1405.26024 · doi:10.1016/j.cam.2018.10.022
[20] Park, M.J., Kwon, O.M., Ryu, J.H.: Generalized integral inequality: application to time-delay systems. Appl. Math. Lett. 77, 6-12 (2018) · Zbl 1377.93137 · doi:10.1016/j.aml.2017.09.010
[21] Sarikaya, M.Z., Tunc, T., Budak, H.: On generalized some integral inequalities for local fractional integrals. Appl. Math. Comput. 276, 316-323 (2016) · Zbl 1410.26045
[22] Farid, G., Khan, K.A., Latif, N., Rehman, A.U., Mehmood, S.: General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function. J. Inequal. Appl. 2018, 243 (2018) · Zbl 1498.26046 · doi:10.1186/s13660-018-1830-8
[23] Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite-Hadamard’s inequality for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403-2407 (2013) · Zbl 1286.26018 · doi:10.1016/j.mcm.2011.12.048
[24] Mohammed, P.O.: On new trapezoid type inequalities for h-convex functions via generalized fractional integrals. Turk. J. Anal. Number Theory 6, 125-128 (2018) · doi:10.12691/tjant-6-4-5
[25] Mohammed, P.O., Sarikaya, M.Z.: Hermite-Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequal. Appl. 2018, 359 (2018) · Zbl 1498.26063 · doi:10.1186/s13660-018-1950-1
[26] Jafari, H., Jassim, H.K., Moshokoa, S.P., Ariyan, V.M., Tchier, F.: Reduced differential transform method for partial differential equations within local fractional derivative operators. Adv. Mech. Eng. 8(4), 1-6 (2016) · doi:10.1177/1687814016633013
[27] Richard, H.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014) · Zbl 1293.26001
[28] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998) · Zbl 0924.34008
[29] Sun, H., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47-58 (2014) · doi:10.1016/j.jconhyd.2013.11.002
[30] Owolabi, K.M.: Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative. Eur. Phys. J. Plus 133(1), 15 (2018) · doi:10.1140/epjp/i2018-11863-9
[31] Kumar, D., Singh, J., Baleanu, D.: Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Phys. A, Stat. Mech. Appl. 492, 155-167 (2018) · Zbl 1514.35463 · doi:10.1016/j.physa.2017.10.002
[32] Jianke, Z., Gaofeng, W., Xiaobin, Z., Chang, Z.: Generalized Euler-Lagrange equations for fuzzy fractional variational problems under gH-Atangana-Baleanu differentiability. Hindawi 2018, Article ID 2740678 (2018). https://doi.org/10.1155/2018/2740678 · Zbl 06868705 · doi:10.1155/2018/2740678
[33] Abdeljawad, T., Baleanu, D.: Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv. Differ. Equ. 2016, 232 (2016). https://doi.org/10.1186/s13662-016-0949-5 · Zbl 1419.34211 · doi:10.1186/s13662-016-0949-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.