×

\(p\)-nilpotency criteria for some verbal subgroups. (English) Zbl 1498.20043

Let \(w \in F_{k}\) be a word in the free group of rank \(k\). For any group \(G\) and arbitrary \(g_1, \ldots, g_k \in G\), elements of the form \(w(g_1, \ldots , g_k)\) are called \(w\)-values in \(G\). The set of all \(w\) values is denoted by \(w(G)\) and \(G(w)=\langle G_{w} \rangle\) is the verbal subgroup of \(G\) corresponding to \(w\).
If \(G\) is a group and \(p\) a prime, then \(G\) satisfies \(P(w, p)\) if the prime \(p\) divides \(o(xy)\), for every \(x \in G_{w}\) of \(p'\)-order and for every non-trivial \(y \in G_{w}\) of order divisible by \(p\).
Let \(\gamma_{k}\) be the word defined inductively as \(\gamma_{1}=x_{1}\) and \(\gamma_{k}=[\gamma_{k-1},x_{k}]\) if \(k \geq 2\). The first result proven in this paper is (Theorem C): Let \(G\) be a finite group. Then \(\gamma_{k}(G)\) is \(p\)-nilpotent if and only if \(G\) satisfies \(P(\gamma_{k},p)\).
Let \(\delta_{k}(x_{1},\ldots, x_{2^{k}}) \in F_{2^{k}}\) be the word defined inductively as \(\delta_{0}=x_{1}\) and \(\delta_{k}=[\delta_{k-1}(x_{1},\ldots,x_{2^{k-1}}),\delta_{k-1}(x_{2^{k-1}+1},\ldots,x_{2^{k}})]\). It is clear that \(\delta_{0}=\gamma_{1}\) and \(\delta_{1}=\gamma_{2}\) and therefore it is sufficient to consider the cases in which it is \(k \geq 2\).
Theorem D: Let \(G\) be a finite soluble group and \(k\in \mathbb{N}\), \(k \geq 2\). Then \(G^{(k)}\) is \(p\)-nilpotent if and only \(G\) satisfies \(P(\delta_{k},p)\).

MSC:

20D15 Finite nilpotent groups, \(p\)-groups
20D60 Arithmetic and combinatorial problems involving abstract finite groups
20F14 Derived series, central series, and generalizations for groups

References:

[1] Asaad, M., On p-nilpotence of finite groups, J. Algebra, 277, 157-164 (2004) · Zbl 1061.20015
[2] Ballester-Bolinches, A.; Xiuyun, G., Some results on p-nilpotence and solubility of finite groups, J. Algebra, 228, 491-496 (2000) · Zbl 0961.20016
[3] Bastos, R.; Monetta, C., Coprime commutators in finite groups, Commun. Algebra, 47, 10, 4137-4147 (2019) · Zbl 1472.20043
[4] Bastos, R.; Monetta, C.; Shumyatsky, P., A criterion for metanilpotency of a finite group, J. Group Theory, 21, 4, 713-718 (2018) · Zbl 1402.20032
[5] Bastos, R.; Shumyatsky, P., A sufficient condition for nilpotency of the commutator subgroup, Sib. Math. J., 57, 5, 762-763 (2016) · Zbl 1358.20014
[6] Baumslag, B.; Wiegold, J., A sufficient condition for nilpotency in a finite group (2014), preprint available at
[7] Beltrán, A.; Lyons, R.; Moretó, A.; Navarro, G.; Sáez, A.; Tiep, P. H., Order of products of elements in finite groups, J. Lond. Math. Soc. (2), 99, 2, 535-552 (2019) · Zbl 1448.20024
[8] Beltrán, A.; Sáez, A., Existence of normal Hall subgroups by means of orders of products, Math. Nachr., 292, 720-723 (2019) · Zbl 1445.20015
[9] da, J.; Alves, Silva; Shumyatsky, P., On nilpotency of higher commutator subgroups of a finite soluble group, Arch. Math. (Basel), 116, 1, 1-6 (2021) · Zbl 1501.20002
[10] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.11.1, 2021.
[11] Gorenstein, D., Finite Groups (1980), Chelsea Publishing Co.: Chelsea Publishing Co. New York · Zbl 0202.02402
[12] Khukhro, E. I., p-Automorphisms of Finite p-Groups, London Mathematical Society Lecture Note Series, vol. 246 (1998) · Zbl 0897.20018
[13] Liebeck, M. W.; O’Brien, E. A.; Shalev, A.; Tiep, P. H., The ore conjecture, J. Eur. Math. Soc., 12, 4, 939-1008 (2010) · Zbl 1205.20011
[14] Liebeck, M. W.; O’Brien, E. A.; Shalev, A.; Tiep, P. H., Commutators in finite quasisimple groups, Bull. Lond. Math. Soc., 43, 6, 1079-1092 (2011) · Zbl 1236.20011
[15] Monetta, C.; Tortora, A., A nilpotency criterion for some verbal subgroups, Bull. Aust. Math. Soc., 100, 2, 281-289 (2019) · Zbl 1444.20022
[16] Moretó, A.; Sáez, A., Prime divisors of orders of products, Proc. R. Soc. Edinb. A, 149, 1153-1162 (2019) · Zbl 1468.20052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.