×

Structural features of microvascular networks trigger blood flow oscillations. (English) Zbl 1497.92072

Summary: We analyse mathematical models in order to understand how microstructural features of vascular networks may affect blood flow dynamics, and to identify particular characteristics that promote the onset of self-sustained oscillations. By focusing on a simple three-node motif, we predict that network “redundancy”, in the form of a redundant vessel connecting two main flow-branches, together with differences in haemodynamic resistance in the branches, can promote the emergence of oscillatory dynamics. We use existing mathematical descriptions for blood rheology and haematocrit splitting at vessel branch-points to construct our flow model; we combine numerical simulations and stability analysis to study the dynamics of the three-node network and its relation to the system’s multiple steady-state solutions. While, for the case of equal inlet-pressure conditions, a “trivial” equilibrium solution with no flow in the redundant vessel always exists, we find that it is not stable when other, stable, steady-state attractors exist. In turn, these “nontrivial” steady-state solutions may undergo a Hopf bifurcation into an oscillatory state. We use the branch diameter ratio, together with the inlet haematocrit rate, to construct a two-parameter stability diagram that delineates regimes in which such oscillatory dynamics exist. We show that flow oscillations in this network geometry are only possible when the branch diameters are sufficiently different to allow for a sufficiently large flow in the redundant vessel, which acts as the driving force of the oscillations. These microstructural properties, which were found to promote oscillatory dynamics, could be used to explore sources of flow instability in biological microvascular networks.

MSC:

92C35 Physiological flow
76Z05 Physiological flows

References:

[1] Bernabeu, MO; Köry, J.; Grogan, JA; Markelc, B.; Beardo, A.; d’Avezac, M.; Enjalbert, R.; Kaeppler, J.; Daly, N.; Hetherington, J.; Krüger, T.; Maini, PK; Pitt-Francis, JM; Muschel, RJ; Alarcón, T.; Byrne, HM, Abnormal morphology biases hematocrit distribution in tumor vasculature and contributes to heterogeneity in tissue oxygenation, Proc Natl Acad Sci, 117, 27811-27819 (2020) · doi:10.1073/pnas.2007770117
[2] Brurberg, KG; Benjaminsen, IC; Dørum, LMR; Rofstad, EK, Fluctuations in tumor blood perfusion assessed by dynamic contrast-enhanced MRI, Magn Reson Med, 58, 473-481 (2007) · doi:10.1002/mrm.21367
[3] Carr, RT; Lacoin, M., Nonlinear dynamics of microvascular blood flow, Ann Biomed Eng, 28, 641-652 (2000) · doi:10.1114/1.1306346
[4] Davis, JM; Pozrikidis, C., Numerical simulation of unsteady blood flow through capillary networks, Bull Math Biol, 73, 1857-1880 (2011) · Zbl 1220.92016 · doi:10.1007/s11538-010-9595-3
[5] Davis JM, Pozrikidis C (2014a) Self-sustained oscillations in blood flow through a honeycomb capillary network. Bull Math Biol 76:2217-2237. doi:10.1007/s11538-014-0002-3 · Zbl 1300.92021
[6] Davis JM, Pozrikidis C (2014b) On the linear stability of blood flow through model capillary networks. Bull Math Biol 76:2985-3015. doi:10.1007/s11538-014-0041-9 · Zbl 1329.92032
[7] Fåhræus, R., The suspension stability of the blood, Physiol Rev, 9, 241-274 (1929) · doi:10.1152/physrev.1929.9.2.241
[8] Fåhræus, R.; Lindqvist, T., The viscosity of blood in narrow capillary tubes, Am J Physiol, 96, 562-568 (1931) · doi:10.1152/ajplegacy.1931.96.3.562
[9] Fenton, BM; Carr, RT; Cokelet, GR, Nonuniform red cell distribution in 20 to \(100 \mu\) m bifurcations, Microvasc Res, 29, 103-126 (1985) · doi:10.1016/0026-2862(85)90010-X
[10] Forouzan, O.; Yang, X.; Sosa, JM; Burns, JM; Shevkoplyas, SS, Spontaneous oscillations of capillary blood flow in artificial microvascular networks, Microvasc Res, 84, 123-132 (2012) · doi:10.1016/j.mvr.2012.06.006
[11] Fry, BC; Lee, J.; Smith, NP; Secomb, TW, Estimation of blood flow rates in large mcrovascular networks, Microcirculation, 19, 530-538 (2012) · doi:10.1111/j.1549-8719.2012.00184.x
[12] Gardner, D.; Li, Y.; Small, B.; Geddes, JB; Carr, RT, Multiple equilibrium states in a micro-vascular network, Math Biosci, 227, 117-124 (2010) · Zbl 1197.92010 · doi:10.1016/j.mbs.2010.07.001
[13] Geddes, JB; Carr, RT; Karst, NJ; Wu, F., The onset of oscillations in microvascular blood flow, SIAM J Appl Dyn Syst, 6, 694-727 (2007) · Zbl 1160.37433 · doi:10.1137/060670699
[14] Geddes, JB; Carr, RT; Wu, F.; Lao, Y.; Maher, M., Blood flow in microvascular networks: a study in nonlinear biology, Chaos, 20 (2010) · Zbl 1311.92057 · doi:10.1063/1.3530122
[15] Gillies, RJ; Brown, JS; Anderson, ARA; Gatenby, RA, Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow, Nat Rev Cancer, 18, 576-585 (2018) · doi:10.1038/s41568-018-0030-7
[16] Gray, LH; Conger, AD; Ebert, M.; Hornsey, S.; Scott, OCA, The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy, Br J Radiol, 26, 638-648 (1953) · doi:10.1259/0007-1285-26-312-638
[17] Harrison, L.; Blackwell, K., Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy?, Oncologist, 9, 31-40 (2004) · doi:10.1634/theoncologist.9-90005-31
[18] Höckel, M.; Schlenger, K.; Aral, B.; Mitze, M.; Schäffer, U.; Vaupel, P., Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix, Cancer Res, 56, 4509-4515 (1996)
[19] Horsman, MR; Mortensen, LS; Petersen, JB; Busk, M.; Overgaard, J., Imaging hypoxia to improve radiotherapy outcome, Nat Rev Clin Oncol, 9, 674-687 (2012) · doi:10.1038/nrclinonc.2012.171
[20] Jain, RK, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, 307, 58-62 (2005) · doi:10.1126/science.1104819
[21] Karst, NJ; Storey, B.; Geddes, JB, Oscillations and multiple equilibria in microvascular blood flow, Bull Math Biol, 77, 1377-1400 (2015) · Zbl 1335.92022 · doi:10.1007/s11538-015-0089-1
[22] Kiani, MF; Pries, AR; Hsu, LL; Sarelius, IH; Cokelet, GR, Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms, Am J Physiol Heart Circ Physiol, 266, H1822-H1828 (1994) · doi:10.1152/ajpheart.1994.266.5.H1822
[23] Kimura, H.; Braun, RD; Ong, ET; Hsu, R.; Secomb, TW; Papahadjopoulos, D.; Hong, K.; Dewhirst, MW, Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma, Cancer Res, 56, 5522-5528 (1996)
[24] Klitzman, B.; Johnson, PC, Capillary network geometry and red cell distribution in hamster cremaster muscle, Am J Physiol, 242, H211-H219 (1982) · doi:10.1152/ajpheart.1982.242.2.H211
[25] Krough, A., Studies on the physiology of capillaries: II. The reactions to local stimuli of the blood-vessels in the skin and web of the frog, J Physiol, 55, 412-422 (1921) · doi:10.1113/jphysiol.1921.sp001985
[26] Michiels, C.; Tellie, C.; Feron, O., Cycling hypoxia: a key feature of the tumor microenvironment, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 76-86, 2016 (1866) · doi:10.1016/j.bbcan.2016.06.004
[27] Pries, AR; Ley, K.; Claassen, M.; Gaehtgens, P., Red cell distribution at microvascular bifurcations, Microvasc Res, 38, 81-101 (1989) · doi:10.1016/0026-2862(89)90018-6
[28] Pries, AR; Fritzsche, A.; Ley, K.; Gaehtgens, P., Redistribution of red blood cell flow in microcirculatory networks by hemodilution, Circ Res, 70, 1113-1121 (1992) · doi:10.1161/01.RES.70.6.1113
[29] Pries, AR; Secomb, TW; Gessner, T.; Sperandlo, MB; Gross, JF; Gaehtgens, P., Resistance to blood flow in microvessels in vivo, Circ Res, 75, 904-915 (1994) · doi:10.1161/01.RES.75.5.904
[30] Storey, BD; Hellen, DV; Karst, NJ; Geddes, JB, Observations of spontaneous oscillations in simple two-fluid networks, Phys Rev E, 91 (2015) · doi:10.1103/PhysRevE.91.023004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.