×

Single-cell data-driven mathematical model reveals possible molecular mechanisms of embryonic stem-cell differentiation. (English) Zbl 1497.92030

MSC:

92C15 Developmental biology, pattern formation

References:

[1] J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, et al., Blastocysts Embryonic Stem Cell Lines Derived from Human, Science, 282 (1998), 1145-1147.
[2] C. E. Murry, M. A. Laflamme, X. Yang, et al., Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate heart, Nature, 510 (2014), 273-277.
[3] P. P. Tam and D. A. Loebel, Gene function in mouse
[4] A. Adamo, I. Paramonov, M. J. Barrero, et al., LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells, Nat. Cell Biol., 13 (2011), 652-659.
[5] L. Chu, J. Zhang, J. A. Thomson, et al., Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm, Genome Biol., 17 (2016), 173.
[6] S. Larabee, H. Coia, G. Gallicano, et al., miRNA-17 Members that Target Bmpr2 Influence Signaling Mechanisms Important for Embryonic Stem Cell Differentiation In Vitro and Gastrulation in Embryos, Stem Cells Dev., 24 (2015), 354-371.
[7] R. A. Young, L. A. Boyer, T. I. Lee, et al., Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells, Cell, 122 (2005), 947-956.
[8] L. W. Jeffrey, T. A. Beyer, J. L. Wrana, et al., Switch enhancers interpret TGF- and Hippo signaling to control cell fate in human embryonic stem cells, Cell Rep., 5 (2013), 1611-1624.
[9] J. Rossant, J. S. Draper, A. Nagy, et al., Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells, Cell Stem Cell, 3 (2008), 182-195.
[10] N. Ivanova, Z. Wang, S. Razis, et al., Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells, Cell Stem Cell, 10 (2012), 440-454.
[11] A. F. Schier, A. Regev, D. Gennert, et al., Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol., 33 (2015), 495-502.
[12] J. L. Rinn, C. Trapnell, T. S. Mikkelsen, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol., 32 (2014), 381-386.
[13] J. Tan and X. Zou, Complex dynamical analysis of a coupled network from innate immune responses, Int. J. Bifurcat. Chaos, 23 (2013), 1350180. · Zbl 1284.34084
[14] S. Jin, D. Wang and X. Zou, Trajectory control in nonlinear networked systems and its applications to complex biological systems, SIAM J. Appl. Math, 78 (2018), 629-649. · Zbl 1387.93042
[15] S. Jin, F. Wu and X. Zou, Domain control of nonlinear networked systems and applications to complex disease networks, Discrete Cont. Dyn. B, 22 (2017), 2169-2206. · Zbl 1359.93050
[16] X. Shu, D. Pei, S. Wei, et al., A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes, Nat. Commun., 8 (2017), 15166.
[17] M. A. Nieto, J. P. Thiery, R. Y. Huang, et al., Epithelial-mesenchymal transitions in development and disease, Cell, 139 (2009), 871-890.
[18] J. P. Thiery and J. P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions, Nat. Rev. Mol. Cell Biol., 7 (2006), 131-142.
[19] H. Peinado, F. Portillo and A. Cano, Transcriptional regulation of cadherins during development and carcinogenesis, Int. J. Dev. Biol., 48 (2004), 365-375.
[20] A. Voulgari and A. Pintzas, Epithelial mesenchymal transition in cancer
[21] J. Zhao, X. Wang, M. Hung, et al., Krüppel-Like Factor 8 Induces Epithelial to esenchymal Transition and Epithelial Cell Invasion, Cancer Res., 67 (2007), 7184-7193.
[22] Y. Ma, X. Zheng, K. Chen, et al., ZEB1 promotes the progression and metastasis of cervical squamous cell carcinoma via the promotion of epithelial-mesenchymal transition, Int. J. Clin. Exp. Pathol., 8 (2015), 11258-11267.
[23] D. Chen, Y. Chu, S. Li, et al., Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells, Chin. J. Cell. Mol. Immunol., 33 (2017), 1073-1078.
[24] B. L. Li, J. M. Cai, F. Gao, et al., Inhibition of TBK1 attenuates radiation-induced epithelial-mesenchymal transition of A549 human lung cancer cells via activation of GSK-3β and repression of ZEB1, Lab. Invest., 94 (2014), 362-370.
[25] J. Comijn, G. Berx, Roy F. van, et al., The two-handed E box binding zinc finger protein SIP1 down-regulates E-cadherin and induces invasion, Mol. Cell, 7 (2001), 1267-1278.
[26] M. Moes, E. Friederich, A. Sol, et al., A novel network integrating a mi-RNA 203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition, PloS One, 7 (2012), e35440.
[27] U. Alon, <em>An Introduction to Systems
[28] D. Chu, N. R. Zabet and B. Mitavskiy, Models of transcription factor · Zbl 1400.92182
[29] J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN’95, International Conference on Neural Networks, Perth, WA, Australia, 4 (1995), 1942-1948.
[30] D. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, J. Phys. Chem., 81 (1977), 2340-2361.
[31] X.Xiang, Y.Chen, X.Zou, etal., UnderstandinginhibitionofviralproteinsontypeIIFNsignaling pathways with modeling and optimization, J. Theor. Biol., 265 (2010), 691-703.
[32] S. Shin, O. Rath, K. Cho, et al., Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway, J. Cell Sci., 122 (2009), 425-435.
[33] T. Tian and K. Burrage, Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl. Acad. Sci., 103 (2006), 8372-8377.
[34] M. R. Birtwistle, J. Rauch, B. N. Kholodenko, et al., Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise, BMC Syst. Biol., 16 (2012), 109.
[35] L. K. Nguyen, M. R. Birtwistle, B. N. Kholodenko, et al., Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl. Acad. Sci., 103 (2006), 8372-8377.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.