×

Optimal reinsurance and investment strategies under mean-variance criteria: partial and full information. (English) Zbl 1497.91268

Summary: This paper is concerned with an optimal reinsurance and investment problem for an insurance firm under the criterion of mean-variance. The driving Brownian motion and the rate in return of the risky asset price dynamic equation cannot be directly observed. And the short-selling of stocks is prohibited. The problem is formulated as a stochastic linear-quadratic control problem where the control variables are constrained. Based on the separation principle and stochastic filtering theory, the partial information problem is solved. Efficient strategies and efficient frontier are presented in closed forms via solutions to two extended stochastic Riccati equations. As a comparison, the efficient strategies and efficient frontier are given by the viscosity solution to the HJB equation in the full information case. Some numerical illustrations are also provided.

MSC:

91G05 Actuarial mathematics
60G35 Signal detection and filtering (aspects of stochastic processes)

References:

[1] Browne, S., Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20, 4, 937-958 (1995) · Zbl 0846.90012 · doi:10.1287/moor.20.4.937
[2] Yang, H. L.; Zhang, L. H., Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37, 3, 615-634 (2005) · Zbl 1129.91020
[3] Promislow, S. D.; Young, V. R., Minimizing the probability of ruin when claims follow Brownian motion with drift, North American Actuarial Journal, 9, 3, 110-128 (2005) · Zbl 1141.91543 · doi:10.1080/10920277.2005.10596214
[4] Gu, A.; Li, Z., Optimal reinsurance and investment strategies for insurers with regime-switching and state-dependent utility function, Journal of Systems Science and Complexity, 29, 6, 1658-1682 (2016) · Zbl 1369.91086 · doi:10.1007/s11424-016-5204-3
[5] Li, D.; Rong, X.; Zhao, H., Optimal investment problem for an insurer and a reinsurer, Journal of Systems Science and Complexity, 28, 6, 1326-1343 (2015) · Zbl 1333.91033 · doi:10.1007/s11424-015-3065-9
[6] Bai, L. H.; Guo, J. Y., Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42, 3, 968-975 (2008) · Zbl 1147.93046
[7] Liang, Z. B.; Yuen, K. C.; Guo, J. Y., Optimal proportional reinsurance and investment in a stock market with Ornstein-Ohlenbeck process, Insurance: Mathematics and Economics, 49, 2, 207-215 (2011) · Zbl 1218.91084
[8] Xu, L.; Zhang, L. M.; Yao, D. J., Optimal investment and reinsurance for an insurer under Markov-modulated financial market, Insurance: Mathematics and Economics, 74, 7-19 (2017) · Zbl 1394.91238
[9] Bielecki, T. R.; Jin, H. Q.; Pliska, S. R., Continuous-time mean-variance portfolio selection with bankruptcy prohibition, Mathematical Finance, 15, 2, 213-244 (2005) · Zbl 1153.91466 · doi:10.1111/j.0960-1627.2005.00218.x
[10] Steinbach, M. C., Markowitz revisited: Mean-variance models in financial portfolio analysis, SIAM review, 43, 1, 31-85 (2001) · Zbl 1049.91086 · doi:10.1137/S0036144500376650
[11] MacLean, L. C.; Zhao, Y. G.; Ziemba, W. T., Mean-variance versus expected utility in dynamic investment analysis, Computational Management Science, 8, 1-2, 3-22 (2011) · Zbl 1214.91103 · doi:10.1007/s10287-009-0106-7
[12] Markowitz, H., Portfolio selection, The Journal of Finance, 7, 1, 77-91 (1952)
[13] Li, D.; Ng, W. L., Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10, 3, 387-406 (2000) · Zbl 0997.91027 · doi:10.1111/1467-9965.00100
[14] Zhou, X. Y.; Li, D., Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42, 1, 19-33 (2000) · Zbl 0998.91023 · doi:10.1007/s002450010003
[15] Li, X.; Zhou, X. Y.; Lim, A. E., Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40, 5, 1540-1555 (2002) · Zbl 1027.91040 · doi:10.1137/S0363012900378504
[16] Hu, Y.; Zhou, X. Y., Constrained stochastic LQ control with random coefficients, and application to portfolio selection, SIAM Journal on Control and Optimization, 44, 2, 444-466 (2015) · Zbl 1210.93082 · doi:10.1137/S0363012904441969
[17] Bai, L. H.; Zhang, H. Y., Dynamic mean-variance problem with constrained risk control for the insurers, Mathematical Methods of Operations Research, 68, 1, 181-205 (2008) · Zbl 1156.93037 · doi:10.1007/s00186-007-0195-4
[18] Bi, J. N.; Meng, Q. B.; Zhang, Y. J., Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer, Annals of Operations Research, 212, 1, 43-59 (2014) · Zbl 1291.91092 · doi:10.1007/s10479-013-1338-z
[19] Zhang, N.; Chen, P.; Jin, Z., Markowitz’s mean-variance optimization with investment and constrained reinsurance, Journal of Industrial and Management Optimization, 13, 1, 375-397 (2017) · Zbl 1364.91075 · doi:10.3934/jimo.2016022
[20] Di Nunno, G.; Øksendal, B., Optimal portfolio, partial information and Malliavin calculus, Stochastics: An International Journal of Probability and Stochastics Processes, 81, 3-4, 303-322 (2009) · Zbl 1176.93081 · doi:10.1080/17442500902917979
[21] Peng, X. C.; Hu, Y. J., Optimal proportional reinsurance and investment under partial information, Insurance: Mathematics and Economics, 53, 2, 416-428 (2013) · Zbl 1304.91127
[22] Wang, G. C.; Wu, Z., General maximum principles for partially observed risk-sensitive optimal control problems and applications to finance, Journal of Optimization Theory and Applications, 141, 3, 677-700 (2009) · Zbl 1178.49049 · doi:10.1007/s10957-008-9484-1
[23] Huang, J. H.; Wang, G. C.; Wu, Z., Optimal premium policy of an insurance firm: Full and partial information, Insurance: Mathematics and Economics, 47, 2, 208-215 (2010) · Zbl 1231.91200
[24] Al-Hussein, A.; Gherbal, B., Necessary and sufficient optimality conditions for relaxed and strict control of forward-backward doubly SDEs with jumps under full and partial information, Journal of Systems Science and Complexity, 33, 6, 1804-1846 (2020) · Zbl 1460.93095 · doi:10.1007/s11424-020-9013-3
[25] Pham, H., Mean-variance hedging for partially observed drift processes, International Journal of Theoretical and Applied Finance, 4, 2, 263-284 (2001) · Zbl 1153.91554 · doi:10.1142/S0219024901000985
[26] Xiong, J.; Zhou, X. Y., Mean-variance portfolio selection under partial information, SIAM Journal on Control and Optimization, 46, 1, 156-175 (2007) · Zbl 1142.91007 · doi:10.1137/050641132
[27] Pang, W. K.; Ni, Y. H.; Li, X., Continuous-time mean-variance portfolio selection with partial information, Journal of Mathematical Finance, 4, 353-365 (2014) · doi:10.4236/jmf.2014.45033
[28] Liang, Z. X.; Song, M., Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65, 66-76 (2015) · Zbl 1348.91168
[29] Cao, J.; Peng, X. C.; Hu, Y. J., Optimal time-consistent investment and reinsurance strategy for mean-variance insurers under the inside information, Acta Mathematicae Applicatae Sinica, English Series, 32, 4, 1087-1100 (2016) · Zbl 1414.91172 · doi:10.1007/s10255-016-0629-y
[30] Li, C. L.; Liu, Z. M.; Wu, J. B., The stochastic maximum principle for a jump-diffusion mean-field model involving impulse controls and applications in finance, Journal of Systems Science and Complexity, 33, 1, 26-42 (2020) · Zbl 1437.93141 · doi:10.1007/s11424-018-8095-7
[31] Gennotte, G., Optimal portfolio choice under incomplete information, The Journal of Finance, 41, 3, 733-746 (1986) · doi:10.1111/j.1540-6261.1986.tb04538.x
[32] Azcue, P.; Muler, N., Optimal reinsurance and dividend distribution policies in the Cramer-Lundberg model, Mathematical Finance, 15, 2, 261-308 (2005) · Zbl 1136.91016 · doi:10.1111/j.0960-1627.2005.00220.x
[33] Luo, S.; Wang, M.; Zeng, X., Optimal reinsurance: Minimize the expected time to reach a goal, Scandinavian Actuarial Journal, 8, 741-762 (2016) · Zbl 1401.91171 · doi:10.1080/03461238.2015.1015161
[34] Liptser, R. S.; Shiryaev, A. N., Statistics of Random Processes: II. Applications (1977), New York: Springer-Verlag, New York · Zbl 0364.60004 · doi:10.1007/978-1-4757-1665-8
[35] Luenberger, D. G., Optimization by Vector Space Methods (1969), New York: John Wiley and Sons, New York · Zbl 0176.12701
[36] Yong, J. M.; Zhou, X. Y., Stochastic Controls: Hamiltonian Systems and HJB Equations (1999), New York: Springer-Verlag, New York · Zbl 0943.93002 · doi:10.1007/978-1-4612-1466-3
[37] Zhou, X. Y.; Yong, J. M.; Li, X. J., Stochastic verification theorems within the framework of viscosity solutions, SIAM Journal on Control and Optimization, 35, 1, 243-253 (1997) · Zbl 0880.93059 · doi:10.1137/S0363012995279973
[38] Björk, T.; Khapko, M.; Murgoci, A., On time-inconsistent stochastic control in continuous time, Finance & Stochastics, 21, 331-360 (2017) · Zbl 1360.49013 · doi:10.1007/s00780-017-0327-5
[39] Björk T and Murgoci A, A general theory of Markovian time inconsistent stochastic control problems, Preprint, 2010, Electronic copy available at: http://ssrn.com/abstract=1694759. · Zbl 1297.49038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.