×

Time discretizations of Wasserstein-Hamiltonian flows. (English) Zbl 1497.65255

Summary: We study discretizations of Hamiltonian systems on the probability density manifold equipped with the \(L^2\)-Wasserstein metric. Based on discrete optimal transport theory, several Hamiltonian systems on a graph (lattice) with different weights are derived, which can be viewed as spatial discretizations of the original Hamiltonian systems. We prove consistency of these discretizations. Furthermore, by regularizing the system using the Fisher information, we deduce an explicit lower bound for the density function, which guarantees that symplectic schemes can be used to discretize in time. Moreover, we show desirable long time behavior of these symplectic schemes, and demonstrate their performance on several numerical examples. Finally, we compare the present approach with the standard viscosity methodology.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
49Q22 Optimal transportation
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games

References:

[1] Ambrosio, Luigi; Gangbo, Wilfred, Hamiltonian ODEs in the Wasserstein space of probability measures, Comm. Pure Appl. Math., 61, 1, 18-53 (2008) · Zbl 1132.37028 · doi:10.1002/cpa.20188
[2] Benamou, Jean-David; Brenier, Yann, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 3, 375-393 (2000) · Zbl 0968.76069 · doi:10.1007/s002110050002
[3] Benamou, Jean-David; Carlier, Guillaume; Cuturi, Marco; Nenna, Luca; Peyr\'{e}, Gabriel, Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., 37, 2, A1111-A1138 (2015) · Zbl 1319.49073 · doi:10.1137/141000439
[4] Bensoussan, Alain; Frehse, Jens; Yam, Phillip, Mean Field Games and Mean Field Type Control Theory, SpringerBriefs in Mathematics, x+128 pp. (2013), Springer, New York · Zbl 1287.93002 · doi:10.1007/978-1-4614-8508-7
[5] Bensoussan, Alain; Frehse, Jens; Yam, Sheung Chi Phillip, The master equation in mean field theory, J. Math. Pures Appl. (9), 103, 6, 1441-1474 (2015) · Zbl 1325.35232 · doi:10.1016/j.matpur.2014.11.005
[6] Bongini, Mattia; Fornasier, Massimo; Rossi, Francesco; Solombrino, Francesco, Mean-field Pontryagin maximum principle, J. Optim. Theory Appl., 175, 1, 1-38 (2017) · Zbl 1386.49003 · doi:10.1007/s10957-017-1149-5
[7] Bonnet, Beno\^{\i }t; Frankowska, H\'{e}l\`ene, Necessary Optimality Conditions for Optimal Control Problems in Wasserstein Spaces, Appl. Math. Optim., 84, suppl. 2, 1281-1330 (2021) · Zbl 1486.30151 · doi:10.1007/s00245-021-09772-w
[8] Bonnet, Beno\^{\i }t; Rossi, Francesco, The Pontryagin maximum principle in the Wasserstein space, Calc. Var. Partial Differential Equations, 58, 1, Paper No. 11, 36 pp. (2019) · Zbl 1404.49016 · doi:10.1007/s00526-018-1447-2
[9] Car12 P. Cardaliaguet. Notes on mean-field games, Available at https://www.ceremade.dauphine.fr/ cardaliaguet/MFG20130420.pdf, 2012.
[10] Cardaliaguet, Pierre; Delarue, Fran\c{c}ois; Lasry, Jean-Michel; Lions, Pierre-Louis, The Master Equation and the Convergence Problem in Mean Field Games, Annals of Mathematics Studies 201, x+212 pp. (2019), Princeton University Press, Princeton, NJ · Zbl 1430.91002 · doi:10.2307/j.ctvckq7qf
[11] Cavagnari, Giulia; Marigonda, Antonio; Piccoli, Benedetto, Generalized dynamic programming principle and sparse mean-field control problems, J. Math. Anal. Appl., 481, 1, 123437, 45 pp. (2020) · Zbl 1425.49011 · doi:10.1016/j.jmaa.2019.123437
[12] Chow, Shui-Nee; Li, Wuchen; Zhou, Haomin, A discrete Schr\"{o}dinger equation via optimal transport on graphs, J. Funct. Anal., 276, 8, 2440-2469 (2019) · Zbl 1414.35205 · doi:10.1016/j.jfa.2019.02.005
[13] Chow, Shui-Nee; Li, Wuchen; Zhou, Haomin, Wasserstein Hamiltonian flows, J. Differential Equations, 268, 3, 1205-1219 (2020) · Zbl 1428.35007 · doi:10.1016/j.jde.2019.08.046
[14] Chow, Shui-Nee; Huang, Wen; Li, Yao; Zhou, Haomin, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Ration. Mech. Anal., 203, 3, 969-1008 (2012) · Zbl 1256.35173 · doi:10.1007/s00205-011-0471-6
[15] Cirant, Marco; Nurbekyan, Levon, The variational structure and time-periodic solutions for mean-field games systems, Minimax Theory Appl., 3, 2, 227-260 (2018) · Zbl 1406.35417
[16] Crandall, M. G.; Lions, P.-L., Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., 43, 167, 1-19 (1984) · Zbl 0556.65076 · doi:10.2307/2007396
[17] CLZ21 J. Cui, L. Dieci, and H. Zhou, A continuation multiple shooting method for Wasserstein geodesic equation, 2105.09502, 2021.
[18] Cui, Jianbo; Liu, Shu; Zhou, Haomin, What is a stochastic Hamiltonian process on finite graph? An optimal transport answer, J. Differential Equations, 305, 428-457 (2021) · Zbl 1477.35293 · doi:10.1016/j.jde.2021.10.009
[19] E, Weinan; Han, Jiequn; Li, Qianxiao, A mean-field optimal control formulation of deep learning, Res. Math. Sci., 6, 1, Paper No. 10, 41 pp. (2019) · Zbl 1421.49021 · doi:10.1007/s40687-018-0172-y
[20] Frieden, B. Roy, Physics from Fisher Information, x+318 pp. (1998), Cambridge University Press, Cambridge · Zbl 0998.81512 · doi:10.1017/CBO9780511622670
[21] Gangbo, Wilfrid; Kim, Hwa Kil; Pacini, Tommaso, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Mem. Amer. Math. Soc., 211, 993, vi+77 pp. (2011) · Zbl 1221.53001 · doi:10.1090/S0065-9266-2010-00610-0
[22] Gangbo, Wilfrid; Nguyen, Truyen; Tudorascu, Adrian, Hamilton-Jacobi equations in the Wasserstein space, Methods Appl. Anal., 15, 2, 155-183 (2008) · Zbl 1171.49308 · doi:10.4310/MAA.2008.v15.n2.a4
[23] Gangbo, Wilfrid; \'{S}wi\polhk ech, Andrzej, Existence of a solution to an equation arising from the theory of mean field games, J. Differential Equations, 259, 11, 6573-6643 (2015) · Zbl 1359.35221 · doi:10.1016/j.jde.2015.08.001
[24] Gelfand, I. M.; Fomin, S. V., Calculus of Variations, vii+232 pp. (1963), Prentice-Hall, Inc., Englewood Cliffs, N.J. · Zbl 0964.49001
[25] MR2035186 J. L. Gross and J. Yellen, editors. Handbook of graph theory. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, 2004. · Zbl 1036.05001
[26] Hairer, Ernst; Lubich, Christian; Wanner, Gerhard, Geometric Numerical Integration, Springer Series in Computational Mathematics 31, xviii+644 pp. (2006), Springer-Verlag, Berlin · Zbl 1094.65125
[27] JSS19 J.-F. Jabir, D. Siska, and L. Szpruch, Mean-field neural odes via relaxed optimal control. 1912.05475, 2019.
[28] Jimenez, Chlo\'{e}; Marigonda, Antonio; Quincampoix, Marc, Optimal control of multiagent systems in the Wasserstein space, Calc. Var. Partial Differential Equations, 59, 2, Paper No. 58, 45 pp. (2020) · Zbl 1436.49003 · doi:10.1007/s00526-020-1718-6
[29] Jin, Shi; Markowich, Peter; Sparber, Christof, Mathematical and computational methods for semiclassical Schr\"{o}dinger equations, Acta Numer., 20, 121-209 (2011) · Zbl 1233.65071 · doi:10.1017/S0962492911000031
[30] Lafferty, John D., The density manifold and configuration space quantization, Trans. Amer. Math. Soc., 305, 2, 699-741 (1988) · Zbl 0642.58009 · doi:10.2307/2000885
[31] Lasry, Jean-Michel; Lions, Pierre-Louis, Mean field games, Jpn. J. Math., 2, 1, 229-260 (2007) · Zbl 1156.91321 · doi:10.1007/s11537-007-0657-8
[32] L\'{e}onard, Christian, A survey of the Schr\"{o}dinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst., 34, 4, 1533-1574 (2014) · Zbl 1277.49052 · doi:10.3934/dcds.2014.34.1533
[33] Li, Wuchen; Lu, Jianfeng; Wang, Li, Fisher information regularization schemes for Wasserstein gradient flows, J. Comput. Phys., 416, 109449, 24 pp. (2020) · Zbl 1437.65055 · doi:10.1016/j.jcp.2020.109449
[34] Li, Wuchen; Yin, Penghang; Osher, Stanley, Computations of optimal transport distance with Fisher information regularization, J. Sci. Comput., 75, 3, 1581-1595 (2018) · Zbl 1415.49030 · doi:10.1007/s10915-017-0599-0
[35] Lott, John, Some geometric calculations on Wasserstein space, Comm. Math. Phys., 277, 2, 423-437 (2008) · Zbl 1144.58007 · doi:10.1007/s00220-007-0367-3
[36] Maas, Jan, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261, 8, 2250-2292 (2011) · Zbl 1237.60058 · doi:10.1016/j.jfa.2011.06.009
[37] Mad27 E. Madelung, Quanten theorie in hydrodynamischer form, Z. Phys. 40 (1927), no. 3-4, 322-326. · JFM 52.0969.06
[38] Nel66 E. Nelson, Derivation of the Schr\"odinger equation from newtonian mechanics, Phys. Rev. 150 (1966), 1079-1085.
[39] Otto, Felix, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26, 1-2, 101-174 (2001) · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[40] Pavon, Michele, Quantum Schr\"{o}dinger Bridges. Directions in Mathematical Systems Theory and Optimization, Lect. Notes Control Inf. Sci. 286, 227-238 (2003), Springer, Berlin · Zbl 1037.93075 · doi:10.1007/3-540-36106-5\_17
[41] Peyr\'{e}, Gabriel, Entropic approximation of Wasserstein gradient flows, SIAM J. Imaging Sci., 8, 4, 2323-2351 (2015) · Zbl 1335.90068 · doi:10.1137/15M1010087
[42] Pogodaev, Nikolay; Staritsyn, Maxim, Impulsive control of nonlocal transport equations, J. Differential Equations, 269, 4, 3585-3623 (2020) · Zbl 1439.49062 · doi:10.1016/j.jde.2020.03.007
[43] Santambrogio, Filippo, Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and their Applications 87, xxvii+353 pp. (2015), Birkh\"{a}user/Springer, Cham · Zbl 1401.49002 · doi:10.1007/978-3-319-20828-2
[44] Sch31 E. Schr\"odinger, Uber die Umkehrung der Naturgesetze, Sitzungsber. Preuss Akad. Wiss. Phys. Math. 144 (1931), 144-153. · Zbl 0001.37503
[45] Villani, C\'{e}dric, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, xvi+370 pp. (2003), American Mathematical Society, Providence, RI · Zbl 1106.90001 · doi:10.1090/gsm/058
[46] Villani, C\'{e}dric, Optimal Transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338, xxii+973 pp. (2009), Springer-Verlag, Berlin · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
[47] von Renesse, Max-K., An optimal transport view of Schr\"{o}dinger’s equation, Canad. Math. Bull., 55, 4, 858-869 (2012) · Zbl 1256.81072 · doi:10.4153/CMB-2011-121-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.