×

On the finite index subgroups of Houghton’s groups. (English) Zbl 1497.20037

Arch. Math. 118, No. 2, 113-121 (2022); correction ibid. 121, No. 4, 459-466 (2023).
The Houghton groups \(H_{1},H_{2}, \ldots\) are a family of infinite groups: the group \(H_{1}\) is isomorphic to \(\mathrm{FSym}(\mathbb{Z})\), the finitary symmetric group over \(\mathbb{Z}\), and \(H_{2}\) is a semidirect product of \(H_{1}\) and the infinite cyclic group. For a precise definition of \(H_{n}\) for \(n \geq 3\), the reader can see the paper under review. It is important to remark that \(H_{n} \leq \mathrm{FSym}(X_{n})\), where \(X_{n}=\{1,\ldots,n\} \times \mathbb{N}\). Furthermore there is a short exact sequence of groups \[1 \longrightarrow \mathrm{FSym}(X_{n}) \longrightarrow H_{n} \overset{\pi}{\longrightarrow} \mathbb{Z}^{n-1} \longrightarrow 1\] where \(\pi\) is induced by defining \(\pi(g_{i}):= e_{i-1}\) for \(i \in \{2,\ldots , n\}\), where \(e_{i}\) denotes the vector in \(\mathbb{Z}^{n-1}\) with \(i\)th entry \(1\) and other entries \(0\).
In this note, the author describes all of the finite index subgroups of each Houghton group and their isomorphism types (Theorem 1).
If \(G\) is a finitely generated group let \(d(G)=\min \{ |S| \mid S\subset G, \langle S \rangle =G \}\). To denote that \(H\) is a subgroup of \(G\) and \(|G:H| < \infty\), in this paper it is written \(H \leq_{\mathsf{f}} G\). The following interesting result is proved
Theorem 3: If \(U \leq_{\mathsf{f}} H_{2}\), then \(d(U) = d(H_{2})\). For \(n\in \{3, 4, \ldots \}\) and \(U \leq_{\mathsf{f}} H_{n}\), we have that \(d(U)\in \{d(H_{n}), d(H_{n}) + 1\}\). Furthermore, let \(\pi(U) =\langle c_{2}e_{1},\ldots , c_{n}e_{n-1}\rangle\). Then \(d(U) = d(H_{n}) + 1\) occurs exactly when both of the following conditions are met: (i) that \(\mathrm{FSym}(X_{n}) \leq U\); and (ii) either one or zero elements in \(\{c_{2}, \ldots , c_{n}\}\) are odd.

MSC:

20F05 Generators, relations, and presentations of groups
20F65 Geometric group theory

References:

[1] Antolín, Y., Burillo, J., Martino, A.: Conjugacy in Houghton’s groups. Publ. Mat. 59(1), 3-16 (2015) · Zbl 1332.20035
[2] Brown, KS, Finiteness properties of groups, J. Pure Appl. Algebra, 44, 45-75 (1987) · Zbl 0613.20033 · doi:10.1016/0022-4049(87)90015-6
[3] Burillo, J., Cleary, S., Martino, A., Röver, C.E.: Commensurations and metric properties of Houghton’s groups. Pacific J. Math. 285(2), 289-301 (2016) · Zbl 1397.20052
[4] Cox, C.G.: Twisted conjugacy in Houghton’s groups. J. Algebra 490, 390-436 (2017) · Zbl 1467.20022
[5] Cox, CG, A note on the \(R_\infty\) property for groups \(\text{FAlt}(X)\le G\le \text{ Sym }(X)\), Comm. Algebra, 47, 3, 978-989 (2019) · Zbl 1475.20054 · doi:10.1080/00927872.2018.1499917
[6] Cox, C.G.: Invariable generation and the Houghton groups. arXiv:2007.01626 (2020) · Zbl 1504.20004
[7] Cox, C.G.: On the spread of infinite groups. arXiv:2012.12197 (2021)
[8] Gonçalves, D., Kochloukova, D.H.: Sigma theory and twisted conjugacy classes. Pacific J. Math. 247(2), 335-352 (2010) · Zbl 1207.20037
[9] Gonçalves, D., Sankaran, P.: Sigma theory and twisted conjugacy, II: Houghton groups and pure symmetric automorphism groups. Pacific J. Math. 280(2), 349-369 (2016) · Zbl 1383.20026
[10] Guba, V.; Sapir, M., On the conjugacy growth functions of groups, Illinois J. Math., 54, 301-313 (2010) · Zbl 1234.20041 · doi:10.1215/ijm/1299679750
[11] Houghton, CH, The first cohomology of a group with permutation module coefficients, Arch. Math. (Basel), 31, 254-258 (1978) · Zbl 0377.20044 · doi:10.1007/BF01226445
[12] Klopsch, B.; Snopce, I., Pro-\(p\) groups with constant generating number on open subgroups, J. Algebra, 331, 263-270 (2011) · Zbl 1229.20023 · doi:10.1016/j.jalgebra.2010.12.016
[13] Kropholler, PH; Martino, A., Graph-wreath products and finiteness conditions, J. Pure Appl. Algebra, 220, 1, 422-434 (2016) · Zbl 1328.18018 · doi:10.1016/j.jpaa.2015.07.001
[14] Kropholler, R., Mallery, B.: Medium-scale curvature at larger radii in finitely generated groups. arXiv:2004.10801 (2020)
[15] Wiegold, J., Transitive groups with fixed-point-free permutations. II, Arch. Math. (Basel), 29, 571-573 (1977) · Zbl 0382.20029 · doi:10.1007/BF01220455
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.