×

Commutator length of powers in free products of groups. (English) Zbl 1497.20032

Given two groups \(A\) and \(B\), consider the following question: what is the minimal commutator length of the \(n\)-th power of an element \(g \in A * B\) not conjugate to elements of the free factors?
Recall that the commutator length of a group element is the minimal integer \(k\) such that it decomposes into a product of \(k\) commutators.
A simplified version of the main theorem of this paper goes as follows: Suppose that, in a free product of groups \(G = \star_{j\in J}\) without non-identity elements of order less than \(N\), the following equality holds: \[ c_1\cdots c_k d_1\cdots d_l = u_1^{n_1}\cdots u_m^{u_m} \] where
1.
the \(c_i\) are commutators;
2.
the \(d_i\) are conjugate to elements of the union of the groups \(A_j\);
3.
the \(u_i\) are conjugate to each other and not conjugate to elements of the union of the groups \(A_j\); and
4.
the \(n_i\) are positive integers.
Then \[ 2k+l \geq \sum_{i=1}^m (n_i-1) - 2\left[ \frac{1}{N}\sum_{i=1}^m n_i\right] +2 \]
As a corollary the authors show that: if \(c_1 \cdots c_k = u^n\) holds in the free product of groups \(\star_{j\in J} A_j\), where the \(c_i\) are commutators and \(u\) is not conjugate to elements of the free factors, then \[ 2k \geq n - 2\left[ \frac{n}{N}\right] +1. \]
Here, \([x]\) is the floor of \(x\). The results of of this paper recover and improve results from [L. P. Comerford jun. et al., Proc. Am. Math. Soc. 122, No. 1, 47–52 (1994; Zbl 0821.20008); L. Chen, Proc. Am. Math. Soc. 146, No. 7, 3143–3151 (2018; Zbl 1387.57001); S. V. Ivanov and A. A. Klyachko, Bull. Lond. Math. Soc. 50, No. 5, 832–844 (2018; Zbl 1436.20042)].

MSC:

20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20F12 Commutator calculus
57M07 Topological methods in group theory

References:

[1] Calegari, D., scl. MSJ Memoirs, 20, pp. xii+209 (Mathematical Society of Japan, Tokyo, 2009). · Zbl 1187.20035
[2] Chen, L., Spectral gap of scl in free products, Proc. Amer. Math. Soc. 146(7) (2018), 3143-3151. arXiv:1611.07936. · Zbl 1387.57001
[3] Clifford, A., Non-amenable type K equations over groups, Glasgow Math. J. 45(2) (2003), 389-400. · Zbl 1051.20011
[4] Clifford, A. and Goldstein, R. Z., Tesselations of \(S^2\) and equations over torsion-free groups, Proc. Edinburgh Math. Soc. 38(3) (1995), 485-493. · Zbl 0842.20030
[5] Clifford, A. and Goldstein, R. Z., The group \(\langle G,\,t|e\rangle\) when \(G\) is torsion free, J. Algebra245(1) (2001), 297-309. · Zbl 0994.20030
[6] Cohen, M. M. and Rourke, C., The surjectivity problem for one-generator, one-relator extensions of torsion-free groups, Geom. Topology5(1) (2001), 127-142. arXiv:math/0009101 · Zbl 1014.20015
[7] Comerford, J. A., Comerford, L. P. Jr. and Edmunds, C. C., Powers as products of commutators, Comm. Algebra19(2) (1991), 675-684. · Zbl 0721.20021
[8] Comerford, L. P. Jr., Edmunds, C. C. and Rosenberger, G., Commutators as powers in free products of groups, Proc. Amer. Math. Soc. 122(1) (1994), 47-52. arXiv:math/9310205 · Zbl 0821.20008
[9] Culler, M., Using surfaces to solve equations in free groups, Topology20(2) (1981), 133-145. · Zbl 0452.20038
[10] Duncan, A. J. and Howie, J., The genus problem for one-relator products of locally indicable groups, Math. Z. 208(1) (1991), 225-237. · Zbl 0724.20024
[11] Fenn, R. and Rourke, C., Klyachko’s methods and the solution of equations over torsion-free groups, L’Enseignement Math. 42 (1996), 49-74. · Zbl 0861.20029
[12] Forester, M. and Rourke, C., Diagrams and the second homotopy group, Commun. Anal. Geom. 13(4) (2005), 801-820. arXiv:math/0306088 · Zbl 1096.55008
[13] Forester, M. and Rourke, C., The adjunction problem over torsion-free groups, Proc. Natl. Acad. Sci. USA102(36) (2005), 12670-12671. arXiv:math/0412274 · Zbl 1135.57300
[14] Frenkel, E. V. and Klyachko, Ant. A., Commutators cannot be proper powers in metric small-cancellation torsion-free groups, arXiv:1210.7908
[15] Giang, Le Thi, The relative hyperbolicity of one-relator relative presentations, J. Group Theory12(6) (2009), 949-959. arXiv:0807.2487 · Zbl 1219.20030
[16] Howie, J., The solution of length three equations over groups, Proc. Edinburgh Math. Soc. 26(1) (1983), 89-96. · Zbl 0499.20017
[17] Howie, J., The quotient of a free product of groups by a single high-powered relator. II. Fourth powers, Proc. London Math. Soc. s3-61(1) (1990), 33-62. · Zbl 0705.20028
[18] Ivanov, S. V. and Klyachko, Ant. A., Solving equations of length at most six over torsion-free groups, J. Group Theory3(3) (2000), 329-337. · Zbl 0971.20020
[19] Ivanov, S. V. and Klyachko, Ant. A., Quasiperiodic and mixed commutator factorizations in free products of groups, Bull. London Math. Soc. 50(5) (2018), 832-844. arXiv:1702.01379 · Zbl 1436.20042
[20] Klyachko, Ant. A., A funny property of a sphere and equations over groups, Comm. Algebra21(7) (1993), 2555-2575. · Zbl 0788.20017
[21] Klyachko, Ant. A., Asphericity tests, Internat. J. Algebra Comp. 7(4) (1997), 415-431. · Zbl 0885.20029
[22] Klyachko, Ant. A., The Kervaire-Laudenbach conjecture and presentations of simple groups, Algebra Logic44(4) (2005), 219-242. arXiv:math.GR/0409146 · Zbl 1104.20032
[23] Klyachko, Ant. A., How to generalize known results on equations over groups, Math. Notes79(3-4) (2006), 377-386. arXiv:math.GR/0406382 · Zbl 1120.20033
[24] Klyachko, Ant. A., SQ-universality of one-relator relative presentations, Sbornik: Math. 197(10) (2006), 1489-1508. arXiv:math.GR/0603468 · Zbl 1188.20024
[25] Klyachko, Ant. A., Free subgroups of one-relator relative presentations, Algebra Logic46(3) (2007), 158-162. arXiv:math.GR/0510582 · Zbl 1155.20031
[26] Klyachko, Ant. A., The structure of one-relator relative presentations and their centres, J. Group Theory12(6) (2009), 923-947. arXiv:math.GR/0701308 · Zbl 1203.20030
[27] Klyachko, Ant. A. and Lurye, D. E., Relative hyperbolicity and similar properties of one-generator one-relator relative presentations with powered unimodular relator, J. Pure Appl. Algebra216(3) (2012), 524-534. arXiv:1010.4220 · Zbl 1267.20049
[28] Mertens, S., The easiest hard problem: number partitioning, Comput. Complex. Stat. Phys. 125(2) (2006), 125-139. arXiv:cond-mat/0310317 · Zbl 1156.82321
[29] Schützenberger, M. P., Sur l’equation \(a^{2+n}=b^2+mc^2+p\) dans un groupe libre, C. R. Acad. Sci. Paris Sér. I Math. 248 (1959), 2435-2436. · Zbl 0090.24403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.