×

A Tseng extragradient method for solving variational inequality problems in Banach spaces. (English) Zbl 1496.47101

Summary: This paper presents an inertial Tseng extragradient method for approximating a solution of the variational inequality problem. The proposed method uses a single projection onto a half space which can be easily evaluated. The method considered in this paper does not require the knowledge of the Lipschitz constant as it uses variable stepsizes from step to step which are updated over each iteration by a simple calculation. We prove a strong convergence theorem of the sequence generated by this method to a solution of the variational inequality problem in the framework of a 2-uniformly convex Banach space which is also uniformly smooth. Furthermore, we report some numerical experiments to illustrate the performance of this method. Our result extends and unifies corresponding results in this direction in the literature.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
49J40 Variational inequalities
90C47 Minimax problems in mathematical programming
Full Text: DOI

References:

[1] Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization, 1-30 (2020) · Zbl 1468.65052
[2] Alber, Y.I.: Metric and generalized projection operators in banach spaces: properties and applications Kartsatos, A.G. (ed.) . Dekker, New York (1996) · Zbl 0883.47083
[3] Antipin, AS, On a method for convex programs using a symmetrical modification of the Lagrange function, Ekon. Mat. Metody., 12, 1164-1173 (1976) · Zbl 0368.90115
[4] Aoyama, K.; Kohsaka, F., Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings, Fixed Point Theory Appl., 95, 13 (2014) · Zbl 1332.47027
[5] Apostol, RY; Grymenko, AA; Semenov, VV, Iterative algorithms for monotone bilevel variational inequalities, J. Comp. Appl. Math., 107, 3-14 (2012)
[6] Aubin, JP; Ekeland, I., Applied nonlinear analysis (1984), New York: Wiley, New York · Zbl 0641.47066
[7] Avetisyan, K.; Djordjevi’ĉ, O.; Pavlovi’ĉ, M., Littlewood-palew inequalities in uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl., 336, 1, 31-43 (2007) · Zbl 1213.42060 · doi:10.1016/j.jmaa.2007.02.056
[8] Censor, Y.; Lent, A., An iterative row-action method for interval complex programming, J. Optim. Theory Appl., 34, 321-353 (1981) · Zbl 0431.49042 · doi:10.1007/BF00934676
[9] Censor, Y.; Gibali, A.; Reich, S., Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization, 61, 1119-1132 (2012) · Zbl 1260.65056 · doi:10.1080/02331934.2010.539689
[10] Censor, Y.; Reich, S., Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, 37, 323-339 (1996) · Zbl 0883.47063 · doi:10.1080/02331939608844225
[11] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26, 827-845 (2011) · Zbl 1232.58008 · doi:10.1080/10556788.2010.551536
[12] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318-335 (2011) · Zbl 1229.58018 · doi:10.1007/s10957-010-9757-3
[13] Chidume, CE; Nnakwe, MO, Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem, Fixed Point Theory and Appl., 2018, 16 (2018) · Zbl 1467.47026 · doi:10.1186/s13663-018-0641-4
[14] Cioranescu, I., Geometry of Banach spaces, duality mappings and nonlinear problems (1990), Dordrecht: Kluwer, Dordrecht · Zbl 0712.47043 · doi:10.1007/978-94-009-2121-4
[15] Goldstein, AA, Convex programming in Hilbert space, Bull. Amer. Math. Soc., 70, 5, 709-910 (1964) · Zbl 0142.17101 · doi:10.1090/S0002-9904-1964-11178-2
[16] Gibali, A.; Reich, S.; Zalas, R., Iterative methods for solving variational inequalities in Euclidean space, J. Fixed Point Theory Appl., 17, 775-811 (2015) · Zbl 1332.47044 · doi:10.1007/s11784-015-0256-x
[17] Gibali, A.; Reich, S.; Zalas, R., Outer approximation methods for solving variational inequalities in Hilbert space, Optimization, 66, 417-437 (2017) · Zbl 1367.58006 · doi:10.1080/02331934.2016.1271800
[18] Gibali, A., Two simple relaxed perturbed extragradient methods for solving variational inequalities in Euclidean spaces, J. Nonlinear Variat. Anal., 2, 49-61 (2017) · Zbl 07015070
[19] Goebel, K.; Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings (1984), New York and Basel: Marcel Dekker, New York and Basel · Zbl 0537.46001
[20] Kamimura, S.; Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., 13, 938-945 (2002) · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[21] Kanzow, C., Shehu, Y.: Strong convergence of a double-type method for monotone variational inequalities in Hilbert spaces. J. Fixed Point Theory Appl. 20(1). Art. 51, p. 24 (2018) · Zbl 1491.47065
[22] Korpelevich, GM, The extragradient method for finding saddle points and other problems, Ekon. Mat. Metody., 12, 747-756 (1976) · Zbl 0342.90044
[23] Malitsky, YV; Semenov, VV, A hybrid method without extrapolation step for solving variational inequality problems, J. Glob. Optim., 61, 193-202 (2015) · Zbl 1366.47018 · doi:10.1007/s10898-014-0150-x
[24] Mann, WR, Mean value methods in iteration, Proc. Am. Math. Soc., 4, 506-510 (1953) · Zbl 0050.11603 · doi:10.1090/S0002-9939-1953-0054846-3
[25] Mashregi, J.; Nasri, M., Forcing strong convergence of Korpelevich’s method in Banach spaces with applications in game theory, Nonlinear Anal., 72, 2086-2099 (2010) · Zbl 1179.49013 · doi:10.1016/j.na.2009.10.009
[26] Nadezhkina, N.; Takahashi, W., Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory. Appl., 128, 1, 191-201 (2006) · Zbl 1130.90055 · doi:10.1007/s10957-005-7564-z
[27] Ogwo, GN; Izuchukwu, C.; Aremu, KO; Mewomo, OT, A viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard space, Bull. Belg. Math. Soc. Simon Stevin, 27, 1-26 (2020) · Zbl 1442.47050 · doi:10.36045/bbms/1590199308
[28] Lin, LJ; Yang, MF; Ansari, QH; Kassay, G., Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps, Nonlinear Anal. Theory Methods Appl., 61, 1-19 (2005) · Zbl 1065.49008 · doi:10.1016/j.na.2004.07.038
[29] Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math., 1-29 (2019) · Zbl 1473.65076
[30] Reem, D.; Reich, S.; De Pierro, A., Re-examination of Bregman functions and new properties of their divergences, Optimization, 68, 279-348 (2019) · Zbl 1407.52008 · doi:10.1080/02331934.2018.1543295
[31] Reich, S.: A weak convergence theorem for alternating method with Bregman distance. In: Kartsatos, A.G. (ed.) Theory and applications of nonlinear operators of accretive and monotone type, pp 313-318. Marcel Dekker, New York (1996) · Zbl 0943.47040
[32] Rockfellar, RT, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14, 877-808 (1977) · Zbl 0358.90053 · doi:10.1137/0314056
[33] Saejung, S.; Yotkaew, P., Approximation of zeros of inverse strongly monotone operator in Banach spaces, Nonlinear Anal., 75, 742-750 (2012) · Zbl 1402.49011 · doi:10.1016/j.na.2011.09.005
[34] Shehu, Y.; Iyiola, OS, On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15, 1, 319-342 (2019) · Zbl 1415.47009
[35] Solodov, MV; Svaiter, BF, A new projection method for variational inequality problems, SIAM J. Control Optim., 37, 765-776 (1999) · Zbl 0959.49007 · doi:10.1137/S0363012997317475
[36] Thong, DV; Vihn, NT; Cho, YJ, A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems, Optim. Lett., 14, 1157-1175 (2020) · Zbl 1445.49005 · doi:10.1007/s11590-019-01391-3
[37] Xu, HK, Inequalities in Banach spaces with applications, Nonlinear Anal., 16, 1127-1138 (1991) · Zbl 0757.46033 · doi:10.1016/0362-546X(91)90200-K
[38] Yang, J.; Liu, H., Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer Algor., 80, 741-752 (2019) · Zbl 1493.47107 · doi:10.1007/s11075-018-0504-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.