×

Coherent structure identification in turbulent channel flow using latent Dirichlet allocation. (English) Zbl 1495.76056

Summary: Identification of coherent structures is an essential step to describe and model turbulence generation mechanisms in wall-bounded flows. To this end, we present a clustering method based on latent Dirichlet allocation (LDA), a generative probabilistic model for collection of discrete data. The method is applied to a set of snapshots featuring the Reynolds stress \((Q\)-events) for a turbulent channel flow at a moderate Reynolds number \(R_\tau=590\). Both two- and three-dimensional analysis show that LDA provides a robust and compact flow description in terms of a combination of motifs, which are latent variables inferred from the set of snapshots. We find that the characteristics of the motifs scale with the wall distance, in agreement with the wall-attached eddy hypothesis of A. Townsend [J. Fluid Mech. 11, 97–120 (1961; Zbl 0127.42602)]. Latent Dirichlet allocation motifs can be used to reconstruct fields with an efficiency that can be compared with the proper orthogonal decomposition (POD). Moreover, the LDA model makes it possible to generate a collection of synthetic fields that captures the intermittent characteristics of the original dataset more clearly than its POD-generated counterpart. These findings highlight the potential of LDA for turbulent flow analysis, efficient reconstruction of actual fields and production of a new field with suitable statistics.

MSC:

76F40 Turbulent boundary layers
76F10 Shear flows and turbulence
76F55 Statistical turbulence modeling

Citations:

Zbl 0127.42602

References:

[1] Alamo, J.C.D., Jimenez, J., Zandonade, P. & Moser, R.D.2006Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech.561, 329-358. · Zbl 1157.76346
[2] Aubert, A.H., Tavenard, R., Emonet, R., De Lavenne, A., Malinowski, S., Guyet, T., Quiniou, R., Odobez, J.-M., Merot, P. & Gascuel-Odoux, C.2013Clustering flood events from water quality time series using latent Dirichlet allocation model. Water Resour. Res.49 (12), 8187-8199.
[3] Baars, W.J., Hutchins, N. & Marusic, I.2017Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech.823, R2. · Zbl 1419.76299
[4] Blei, D., Ng, A. & Jordan, M.I.2003Latent Dirichlet allocation. J. Machine Learning Res.3, 993-1022. · Zbl 1112.68379
[5] Brunton, S.L., Noack, B.R. & Koumoutsakos, P.2020Machine learning for fluid mechanics. Annu. Rev. Fluid Mech.52 (1), 477-508. · Zbl 1439.76138
[6] Cantwell, B.J.1981Organized motion in turbulent flow. Annu. Rev. Fluid Mech.13, 457-515.
[7] Chandran, D., Monty, J.P. & Marusic, I.2020Spectral-scaling-based extension to the attached eddy model of wall turbulence. Phys. Rev. Fluids5, 104606.
[8] Cheng, C., Li, W., Lozano-Durán, A. & Liu, H.2020Uncovering townsend’s wall-attached eddies in low-Reynolds-number wall turbulence. J. Fluid Mech.889, A29. · Zbl 1460.76454
[9] Dempster, A.P., Laird, N.M. & Rubin, D.B.1977Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. B39 (1), 1-38. · Zbl 0364.62022
[10] Dennis, J.C.D.2015Coherent structures in wall-bounded turbulence. An. Acad. Bras. Cienc.87 (2), 161-193.
[11] Ding, C., He, X. & Simon, H.D.2005 On the equivalence of nonnegative matrix factorization and spectral clustering. In SIAM International Conference on Data Mining (ed. H. Kargupta , J. Srivastava , C. Kamath & A. Goodman). SIAM.
[12] Eckart, C. & Young, G.1936The approximation of one matrix by another of lower rank. Psychometrika1 (3), 211-218. · JFM 62.1075.02
[13] Faleiros, T. & Lopes, A.2016 On the equivalence between algorithms for non-negative matrix factorization and latent dirichlet allocation. In ESANN European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning XXIV, Bruges. Louvain-la-Neuve Ciaco.
[14] Flores, O. & Jimenez, J.2010Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids22, 071704.
[15] Griffiths, T.L. & Steyvers, M.2002 A probabilistic approach to semantic representation. In Proceedings of the 24th Annual Conference of the Cognitive Science Society (ed. W.D. Gray & C.D. Schunn). Routledge, Taylor & Francis.
[16] Griffiths, T.L. & Steyvers, M.2004Finding scientific topics. Proc. Natl Acad. Sci.101 (suppl 1), 5228-5235.
[17] Hellström, L.H.O., Marusic, I. & Smits, A.J.2016Self-similarity of the large-scale motions in turbulent pipe flow. J. Fluid Mech.792, R1. · Zbl 1381.76119
[18] Hofmann, M.D., Blei, D.M., Wang, C. & Paisley, J.2013Stochastic variational inference. J. Machine Learning Res.14, 1303-1347. · Zbl 1317.68163
[19] Hofmann, T.1999 Probabilistic latent semantic analysis. In Proceedings of Uncertainty in Artificial Intelligence (ed. K.B. Laskey & H. Prade). UAI99. Morgan Kaufmann. · Zbl 0970.68130
[20] Holmes, P., Lumley, J.L. & Berkooz, G.1996Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press. · Zbl 0890.76001
[21] Hu, R., Yang, X.I.A. & Zheng, X.2020Wall-attached and wall-detached eddies in wall-bounded turbulent flows. J. Fluid Mech.885, A30. · Zbl 1460.76467
[22] Hwang, J. & Sung, H.J.2018Wall-attached structures of velocity fluctuations in a turbulent boundary layer. J. Fluid Mech.856, 958-983. · Zbl 1415.76340
[23] Hwang, J. & Sung, H.J.2019Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow. Phys. Fluids31 (5), 055109.
[24] Jimenez, J.2013Near-wall turbulence. Phys. Fluids25 (1), 101302.
[25] Jimenez, J.2018Coherent structures in wall-bounded turbulence. J. Fluid Mech.842, P1. · Zbl 1419.76316
[26] Johnson, P.L. & Meneveau, C.2017Turbulence intermittency in a multiple-time-scale Navier-Stokes-based reduced model. Phys. Rev. Fluids2, 072601.
[27] Kim, H.T., Kline, S.J. & Reynolds, W.C.1971The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech.50 (1), 133-160.
[28] Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W.1967The structure of turbulent boundary layers. J. Fluid Mech.30 (4), 741-773. · Zbl 1461.76274
[29] Lloyd, S.P.1982Least squares quantization in PCM. IEEE Trans. Inf. Theory28 (2), 129-137. · Zbl 0504.94015
[30] Lozano-Duran, A., Flores, O. & Jimenez, J.2012The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech.524, 1-31. · Zbl 1250.76108
[31] Lumley, J.L.1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (ed. A.M. Iaglom & V.I. Tatarski), pp. 221-227. Nauka.
[32] Macqueen, J.1967 Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics (ed. L.M. Le Cam & J. Neyman), pp. 281-297. University of California Press. · Zbl 0214.46201
[33] Marusic, I. & Monty, J.P.2019Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech.51 (1), 49-74. · Zbl 1412.76038
[34] Moser, R., Kim, J. & Mansour, N.N.1999Direct numerical simulation of turbulent channel flow up to \(Re_{\tau }=590\). Phys. Fluids11 (4), 943. · Zbl 1147.76463
[35] Muralidhar, S., Podvin, B., Mathelin, L. & Fraigneau, Y.2019Spatio-temporal proper orthogonal decomposition of turbulent channel flow. J. Fluid Mech.864, 614-639. · Zbl 1415.76332
[36] Pedregosa, F., et al.2011Scikit-learn: machine learning in Python. J. Machine Learning Res.12, 2825-2830. · Zbl 1280.68189
[37] Perry, A.E. & Chong, M.S.1982On the mechanism of wall turbulence. J. Fluid Mech.119, 173-217. · Zbl 0517.76057
[38] Perry, A.E. & Marusic, I.1995A wall-wake model for the turbulent structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech.298, 361-388. · Zbl 0849.76030
[39] Philip, J., Meneveau, C., De Silva, C.M. & Marusic, I.2014Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids26 (1), 015105.
[40] Podvin, B. & Fraigneau, Y.2017A few thoughts on proper orthogonal decomposition in turbulence. Phys. Fluids29, 531.
[41] Podvin, B., Fraigneau, Y., Jouanguy, J. & Laval, J.P.2010On self-similarity in the inner wall layer of a turbulent channel flow. Trans. ASME J. Fluids Engng132 (4), 41202.
[42] Robinson, S.K.1991Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.23, 601-639.
[43] Sharma, A.S. & Mckeon, B.J.2013On coherent structure in wall turbulence. J. Fluid Mech.728, 196-238. · Zbl 1291.76173
[44] Sirovich, L.1987Turbulence and the dynamics of coherent structures part i: coherent structures. Q. Appl. Maths45 (3), 561-571. · Zbl 0676.76047
[45] Stanislas, M., Perret, L. & Foucaut, J.M.2008Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech.602, 327-382. · Zbl 1175.76025
[46] Tipping, M.E. & Bishop, C.M.1999Probabilistic principal component analysis. J. R. Stat. Soc. B61 (3), 611-622. · Zbl 0924.62068
[47] Townsend, A.A.1947Measurements in the turbulent wake of a cylinder. Proc. R. Soc. Lond. A190, 551-561.
[48] Townsend, A.A.1961Equilibrium layers and wall turbulence. J. Fluid Mech.11 (1), 97-120. · Zbl 0127.42602
[49] Wallace, J.M., Eckelmann, H. & Brodkey, R.S.1972The wall region in turbulent shear flow. J. Fluid Mech.54 (1), 39-48.
[50] Willmarth, W.W. & Lu, S.S.1972Structure of the Reynolds stress near the wall. J. Fluid Mech.55 (1), 65-92.
[51] Woodcock, J.D. & Marusic, I.2015The statistical behavior of attached eddies. Phys. Fluids27, 015104.
[52] Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M.1999Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech.387, 173-217. · Zbl 0946.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.