×

Influence of asymptotically-limiting micromechanical properties on the effective behaviour of fibre-supported composite materials. (English) Zbl 1494.74064

The paper concerns the effective elastic properties of the square array of circular inclusions with moderate concentration. A few numerical examples with high contrast parameters are performed by using COMSOL Multiphysics. The numerical results are compared with some selected previous computations.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties
74M25 Micromechanics of solids
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics

Software:

COMSOL

References:

[1] Mangalgiri, P., Composite materials for aerospace applications, Bull Mater Sci, 22, 3, 657-664 (1999) · doi:10.1007/BF02749982
[2] Saba, N.; Jawaid, M.; Sultan, MT, An overview of mechanical and physical testing of composite materials (2018), Amsterdam: Elsevier, Amsterdam
[3] Sheffield, C.; Meyers, K.; Johnson, E.; Rajachar, RM, Application of composite hydrogels to control physical properties in tissue engineering and regenerative medicine, Gels, 4, 2, 51 (2018) · doi:10.3390/gels4020051
[4] Greenhall, J.; Homel, L.; Raeymaekers, B., Ultrasound directed self-assembly processing of nanocomposite materials with ultra-high carbon nanotube weight fraction, J Compos Mater, 53, 10, 1329-1336 (2019) · doi:10.1177/0021998318801452
[5] Lakes, R., Materials with structural hierarchy, Nature, 361, 6412, 511-515 (1993) · doi:10.1038/361511a0
[6] Khalesi, H.; Lu, W.; Nishinari, K.; Fang, Y., Fundamentals of composites containing fibrous materials and hydrogels: a review on design and development for food applications, Food Chem, 364 (2021) · doi:10.1016/j.foodchem.2021.130329
[7] Mertiny, P.; Ellyin, F., Influence of the filament winding tension on physical and mechanical properties of reinforced composites, Composites Part A, 33, 12, 1615-1622 (2002) · doi:10.1016/S1359-835X(02)00209-9
[8] Ebenstein, DM; Pruitt, LA, Nanoindentation of biological materials, Nano Today, 1, 3, 26-33 (2006) · doi:10.1016/S1748-0132(06)70077-9
[9] Hemker, K.; Sharpe, W., Microscale characterization of mechanical properties, Annu Rev Mater Res, 37, 1, 93-126 (2007) · doi:10.1146/annurev.matsci.36.062705.134551
[10] Dixit, A.; Mali, HS, Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review, Mech Compos Mater, 49, 1, 1-20 (2013) · doi:10.1007/s11029-013-9316-8
[11] Fang, F.; Lake, SP, Modelling approaches for evaluating multiscale tendon mechanics, Interface Focus, 6, 1, 20150044 (2016) · doi:10.1098/rsfs.2015.0044
[12] Haghighi, M.; Golestanian, H.; Aghadavoudi, F., Determination of mechanical properties of two-phase and hybrid nanocomposites: experimental determination and multiscale modeling, J Polym Eng, 41, 5, 356-364 (2021) · doi:10.1515/polyeng-2020-0312
[13] Khezrzadeh, H., A statistical micromechanical multiscale method for determination of the mechanical properties of composites with periodic microstructure, Composites Part B, 115, 138-143 (2017) · doi:10.1016/j.compositesb.2016.10.024
[14] Lurie, SA; Belov, PA; Tuchkova, NP, The application of the multiscale models for description of the dispersed composites, Composites Part A, 36, 2, 145-152 (2005) · doi:10.1016/S1359-835X(04)00164-2
[15] Piatnitski, A.; Ptashnyk, M., Homogenization of biomechanical models for plant tissues, Multiscale Model Simul, 15, 1, 339-387 (2017) · Zbl 1383.35019 · doi:10.1137/15M1046198
[16] Buljac, A.; Shakoor, M.; Neggers, J.; Bernacki, M.; Bouchard, PO; Helfen, L.; Morgeneyer, TF; Hild, F., Numerical validation framework for micromechanical simulations based on synchrotron 3d imaging, Comput Mech, 59, 3, 419-441 (2017) · doi:10.1007/s00466-016-1357-0
[17] Lebensohn, RA; Brenner, R.; Castelnau, O.; Rollett, AD, Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper, Acta Mater, 56, 15, 3914-3926 (2008) · doi:10.1016/j.actamat.2008.04.016
[18] Masad, E.; Tashman, L.; Somedavan, N.; Little, D., Micromechanics-based analysis of stiffness anisotropy in asphalt mixtures, J Mater Civil Eng, 14, 5, 374-383 (2002) · doi:10.1061/(ASCE)0899-1561(2002)14:5(374)
[19] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J Mech Phys Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[20] Hill, R., Theory of mechanical properties of fibre-strengthened materials. 1: elastic behaviour, J Mech Phys Solids, 12, 4, 199-212 (1964) · doi:10.1016/0022-5096(64)90019-5
[21] Hashin, Z., Analysis of properties of fiber composites with anisotropic constituents, J Appl Mech Trans ASME, 46, 3, 543-550 (1979) · Zbl 0436.73013 · doi:10.1115/1.3424603
[22] Hori, M.; Nemat-Nasser, S., On two micromechanics theories for determining micro-macro relations in heterogeneous solids, Mech Mater, 31, 10, 667-682 (1999) · doi:10.1016/S0167-6636(99)00020-4
[23] Lanir, Y., Constitutive equations for fibrous connective tissues, J Biomech, 16, 1, 1-12 (1983) · doi:10.1016/0021-9290(83)90041-6
[24] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall, 21, 5, 571-574 (1973) · doi:10.1016/0001-6160(73)90064-3
[25] Pinho-da Cruz, J.; Oliveira, J.; Teixeira-Dias, F., Asymptotic homogenisation in linear elasticity. Part I: mathematical formulation and finite element modelling, Comput Mater Sci, 45, 4, 1073-1080 (2009) · doi:10.1016/j.commatsci.2009.02.025
[26] Parnell, WJ; Abrahams, ID, Homogenization for wave propagation in periodic fibre-reinforced media with complex microstructure. I-Theory, J Mech Phys Solids, 56, 7, 2521-2540 (2008) · Zbl 1171.74409 · doi:10.1016/j.jmps.2008.02.003
[27] Penta, R.; Gerisch, A., Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study, Comput Vis Sci, 17, 4, 185-201 (2015) · Zbl 1388.74086 · doi:10.1007/s00791-015-0257-8
[28] Penta, R.; Gerisch, A., The asymptotic homogenization elasticity tensor properties for composites with material discontinuities, Continuum Mech Thermodyn, 29, 1, 187-206 (2017) · Zbl 1365.74146 · doi:10.1007/s00161-016-0526-x
[29] Ramírez-Torres, A.; Penta, R.; Rodríguez-Ramos, R.; Merodio, J.; Sabina, FJ; Bravo-Castillero, J.; Guinovart-Díaz, R.; Preziosi, L.; Grillo, A., Three scales asymptotic homogenization and its application to layered hierarchical hard tissues, Int J Solids Struct, 130-131, 190-198 (2018) · doi:10.1016/j.ijsolstr.2017.09.035
[30] Davit, Y.; Bell, CG; Byrne, HM; Chapman, LA; Kimpton, LS; Lang, GE; Leonard, KH; Oliver, JM; Pearson, NC; Shipley, RJ; Waters, SL; Whiteley, JP; Wood, BD; Quintard, M., Homogenization via formal multiscale asymptotics and volume averaging: how do the two techniques compare?, Adv Water Resour, 62, 178-206 (2013) · doi:10.1016/j.advwatres.2013.09.006
[31] Burridge, R.; Keller, JB, Poroelasticity equations derived from microstructure, J Acoust Soc Am, 70, 4, 1140 (1981) · Zbl 0519.73038 · doi:10.1121/1.386945
[32] Chen, MJ; Kimpton, LS; Whiteley, JP; Castilho, M.; Malda, J.; Please, CP; Waters, SL; Byrne, HM, Multiscale modelling and homogensation of fibre-reinforced hydrogels for tissue engineering, Eur J Appl Math, 31, 1, 143-171 (2020) · Zbl 1503.74027 · doi:10.1017/S0956792518000657
[33] Daly, KR; Roose, T., Determination of macro-scale soil properties from pore-scale structures: model derivation, Proc R Soc A, 474, 2209, 20170141 (2018) · Zbl 1402.74079 · doi:10.1098/rspa.2017.0141
[34] Meguid, SA; Kalamkarov, AL, Asymptotic homogenization of elastic composite materials with a regular structure, Int J Solids Struct, 31, 3, 303-316 (1994) · Zbl 0791.73007 · doi:10.1016/0020-7683(94)90108-2
[35] Bauchau, O.; Craig, J., Structural analysis (2009), Dordrecht: Springer, Dordrecht · doi:10.1007/978-90-481-2516-6
[36] Parnell, WJ; Vu, MB; Grimal, Q.; Naili, S., Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone, Biomech Model Mechanobiol, 11, 6, 883-901 (2012) · doi:10.1007/s10237-011-0359-2
[37] Nolan, D.; McGarry, J., On the compressibility of arterial tissue, Ann Biomed Eng, 44, 4, 993-1007 (2016) · doi:10.1007/s10439-015-1417-1
[38] Saraf, H.; Ramesh, K.; Lennon, A.; Merkle, A.; Roberts, J., Mechanical properties of soft human tissues under dynamic loading, J Biomech, 40, 9, 1960-1967 (2007) · doi:10.1016/j.jbiomech.2006.09.021
[39] Howell, P.; Kozyreff, G.; Ockendon, J., Applied solid mechanics (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1153.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.