×

Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel. (English) Zbl 1494.30074

Summary: We rigorously compute the integrable system for the limiting \((N\to \infty )\) distribution function of the extreme momentum of \(N\) noninteracting fermions when confined to an anharmonic trap \(V(q)={q^{2n}}\) for \(n\in{\mathbb{Z}_{\ge 1}}\) at positive temperature. More precisely, the edge momentum statistics in the harmonic trap \(n=1\) are known to obey the weak asymmetric KPZ crossover law which is realized via the finite temperature Airy kernel determinant or equivalently via a Painlevé-II integro-differential transcendent, cf. [K. Liechty and D. Wong, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 2, 1072–1098 (2020; Zbl 1447.82014); G. Amir et al., Commun. Pure Appl. Math. 64, No. 4, 466–537 (2011; Zbl 1222.82070)]. For general \(n\ge 2\), a novel higher order finite temperature Airy kernel has recently emerged in physics literature [P. Le Doussal, S. N. Majumdar and G. Schehr, “Multicritical edge statistics for the momenta of fermions in nonharmonic traps”, Phys. Rev. Lett. 121 (3) (2018) 030603, https://doi.org/10.1103/PhysRevLett.121.030603] and we show that the corresponding edge law in momentum space is now governed by a distinguished Painlevé-II integro-differential hierarchy. Our analysis is based on operator-valued Riemann-Hilbert techniques which produce a Lax pair for an operator-valued Painlevé-II ODE system that naturally encodes the aforementioned hierarchy. As byproduct, we establish a connection of the integro-differential Painlevé-II hierarchy to a novel integro-differential mKdV hierarchy.

MSC:

30E25 Boundary value problems in the complex plane
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
45J05 Integro-ordinary differential equations

References:

[1] M. Adler and J. Moser. On a class of polynomials connected with the Korteweg-de Vries equation. Comm. Math. Phys. 61 (1) (1978) 1-30. · Zbl 0428.35067
[2] H. Airault. Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1) (1979) 31-53. · Zbl 0496.58012 · doi:10.1002/sapm197961131
[3] G. Amir, I. Corwin and J. Quastel. Probability distribution of the free energy of the continuum directed random polymer in \[1+1\] dimensions. Comm. Pure Appl. Math. 64 (4) (2011) 466-537. · Zbl 1222.82070 · doi:10.1002/cpa.20347
[4] J. Baik and T. Bothner. The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov-Shabat system. Ann. Appl. Probab. 30 (1) (2020) 460-501. · Zbl 1434.60018 · doi:10.1214/19-AAP1509
[5] A. V. Belitsky. Null octagon from Deift-Zhou steepest descent, 2020. Available at https://arxiv.org/abs/2012.10446. · Zbl 1498.81100
[6] F. A. Berezin and M. A. Shubin. The Schrödinger Equation. Mathematics and Its Applications (Soviet Series) 66. Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the 1983 Russian edition by Yu. Rajabov, D. A. Leĭtes and N. A. Sakharova and revised by Shubin, With contributions by G. L. Litvinov and Leĭtes. · doi:10.1007/978-94-011-3154-4
[7] M. Bertola and M. Cafasso. The transition between the gap probabilities from the Pearcey to the airy process—a Riemann-Hilbert approach. Int. Math. Res. Not. IMRN 7 (2012) 1519-1568. · Zbl 1251.60005 · doi:10.1093/imrn/rnr066
[8] D. Betea and J. Bouttier. The periodic Schur process and free fermions at finite temperature. Math. Phys. Anal. Geom. 22 (1) (2019) Paper No. 3, 47. · Zbl 1409.82010 · doi:10.1007/s11040-018-9299-8
[9] D. Betea, J. Bouttier and H. Walsh. Multicritical random partitions, 2020. Available at https://arxiv.org/abs/2012.01995.
[10] A. Borodin, I. Corwin and P. Ferrari. Free energy fluctuations for directed polymers in random media in \[1+1\] dimension. Comm. Pure Appl. Math. 67 (7) (2014) 1129-1214. · Zbl 1295.82035 · doi:10.1002/cpa.21520
[11] T. Bothner. On the origins of Riemann-Hilbert problems in mathematics. Nonlinearity 34 (4) (2021) R1-R73. · Zbl 1462.30070 · doi:10.1088/1361-6544/abb543
[12] T. Bothner A Riemann-Hilbert approach to Fredholm determinants of integral Hankel composition operators: Scalar kernels. Unpublished manuscript.
[13] M. Cafasso, T. Claeys and M. Girotti. Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes. Int. Math. Res. Not. IMRN 2021 (4) (2021) 2437-2478. · Zbl 1489.60081 · doi:10.1093/imrn/rnz168
[14] M. Cafasso, T. Claeys and G. Ruzza. Airy kernel determinant solutions to the KdV equation and integro-differential Painlevé equations. Comm. Math. Phys. 386 (2021) 1107-1153. · Zbl 1477.37080 · doi:10.1007/s00220-021-04108-9
[15] T. Claeys, A. Its and I. Krasovsky. Higher-order analogues of the Tracy-Widom distribution and the Painlevé II hierarchy. Comm. Pure Appl. Math. 63 (3) (2010) 362-412. · Zbl 1198.34191 · doi:10.1002/cpa.20284
[16] T. Claeys and M. Vanlessen. Universality of a double scaling limit near singular edge points in random matrix models. Comm. Math. Phys. 273 (2) (2007) 499-532. · Zbl 1136.82023 · doi:10.1007/s00220-007-0256-9
[17] P. A. Clarkson, N. Joshi and M. Mazzocco. The Lax pair for the mKdV hierarchy. In Théories asymptotiques et équations de Painlevé 53-64. Sémin. Congr. 14. Soc. Math. France, Paris, 2006. · Zbl 1132.37320
[18] P. A. Clarkson and E. L. Mansfield. The second Painlevé equation, its hierarchy and associated special polynomials. Nonlinearity 16 (3) (2003) R1-R26. · Zbl 1040.33015 · doi:10.1088/0951-7715/16/3/201
[19] I. Corwin. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1 (1) (2012) 1130001, 76. · Zbl 1247.82040 · doi:10.1142/S2010326311300014
[20] D. S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr. Noninteracting fermions at finite temperature in a \(d\)-dimensional trap: Universal correlations. Phys. Rev. A 94 (6) (2016) 063622. · doi:10.1103/PhysRevA.94.063622
[21] D. S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr. Wigner function of noninteracting trapped fermions. Phys. Rev. A 97 (6) (2018) 063614. · doi:10.1103/PhysRevA.97.063614
[22] E. Dimitrov. KPZ and Airy limits of Hall-Littlewood random plane partitions. Ann. Inst. Henri Poincaré Probab. Stat. 54 (2) (2018) 640-693. · Zbl 1392.33012 · doi:10.1214/16-AIHP817
[23] H. Flaschka and A. C. Newell. Monodromy and spectrum preserving deformations. I. Comm. Math. Phys. 76 (1) (1980) 65-116. · Zbl 0439.34005
[24] I. Gohberg, S. Goldberg and N. Krupnik. Traces and Determinants of Linear Operators. Operator Theory: Advances and Applications 116. Birkhäuser Verlag, Basel, 2000. · Zbl 0946.47013 · doi:10.1007/978-3-0348-8401-3
[25] A. R. Its and K. K. Kozlowski. Large-\(x\) analysis of an operator-valued Riemann-Hilbert problem. Int. Math. Res. Not. IMRN 6 (2016) 1776-1806. · Zbl 1359.47045 · doi:10.1093/imrn/rnv188
[26] K. Johansson. Random matrices and determinantal processes, 2005. Available at https://arxiv.org/abs/math-ph/0510038v1. · Zbl 1411.60144
[27] K. Johansson. From Gumbel to Tracy-Widom. Probab. Theory Related Fields 138 (1-2) (2007) 75-112. · Zbl 1116.60020 · doi:10.1007/s00440-006-0012-7
[28] T. Kimura and A. Zahabi. Universal edge scaling in random partitions. Lett. Math. Phys. 111 (2) (2021) Paper No. 48, 16. · Zbl 1462.60008 · doi:10.1007/s11005-021-01389-y
[29] M. Kohno. An extended Airy function of the first kind. Hiroshima Math. J. 9 (2) (1979) 473-489. · Zbl 0428.33003
[30] V. Korepin, N. M. Bogoliubov and A. G. Izergin. Quantum Inverse Scattering Method and Correlation Functions. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1993. · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[31] A. Krajenbrink. From Painlevé to Zakharov-Shabat and beyond: Fredholm determinants and integro-differential hierarchies. J. Phys. A 54 (3) (2021) 035001, 51. · Zbl 1519.37085 · doi:10.1088/1751-8121/abd078
[32] P. Le Doussal. Large deviations for the Kardar-Parisi-Zhang equation from the Kadomtsev-Petviashvili equation. J. Stat. Mech. Theory Exp. 2020 (2020) 043201. · Zbl 1457.82362 · doi:10.1088/1742-5468/ab75e4
[33] P. Le Doussal, S. N. Majumdar and G. Schehr. Multicritical edge statistics for the momenta of fermions in nonharmonic traps. Phys. Rev. Lett. 121 (3) (2018) 030603. · doi:10.1103/PhysRevLett.121.030603
[34] P. Le Doussal, S. N. Majumdar and G. Schehr. Multicritical edge statistics for the momenta of fermions in nonharmonic traps, 2018. Available at https://arxiv.org/abs/1802.06436.
[35] K. Liechty and D. Wang. Asymptotics of free fermions in a quadratic well at finite temperature and the Moshe-Neuberger-Shapiro random matrix model. Ann. Inst. Henri Poincaré Probab. Stat. 56 (2) (2020) 1072-1098. · Zbl 1447.82014 · doi:10.1214/19-AIHP994
[36] N. I. Muskhelishvili. Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics. Dover, New York, 1992. Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok, Corrected reprint of the 1953 English translation.
[37] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds). NIST Handbook of Mathematical Functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. · Zbl 1198.00002
[38] J. Quastel and D. Remenik. KP governs random growth off a one dimensional substrate, 2019. Available at https://arxiv.org/abs/1908.10353. · Zbl 1502.60161
[39] B. Simon. Trace Ideals and Their Applications, 2nd edition. Mathematical Surveys and Monographs 120. American Mathematical Society, Providence, RI, 2005. · Zbl 1074.47001
[40] B. Simon. Advanced Complex Analysis. A Comprehensive Course in Analysis, Part 2B. American Mathematical Society, Providence, RI, 2015. · Zbl 1332.00005 · doi:10.1090/simon/002.2
[41] B. Simon. Operator Theory. A Comprehensive Course in Analysis, Part 4. American Mathematical Society, Providence, RI, 2015. · Zbl 1334.00003 · doi:10.1090/simon/004
[42] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk 55 (5) (2000) 107-160. · Zbl 0991.60038 · doi:10.1070/rm2000v055n05ABEH000321
[43] L. A. Takhtajan. Quantum Mechanics for Mathematicians. Graduate Studies in Mathematics 95. American Mathematical Society, Providence, RI, 2008. · Zbl 1156.81004 · doi:10.1090/gsm/095
[44] S. Tarricone. A fully noncommutative Painlevé II hierarchy: Lax pair and solutions related to Fredholm determinants. SIGMA Symmetry Integrability Geom. Methods Appl. 17 (2021) Paper No. 002, 25. · Zbl 1477.34116 · doi:10.3842/SIGMA.2021.002
[45] C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1) (1994) 151-174. · Zbl 0789.35152
[46] C. A. Tracy and H. Widom. Asymptotics in ASEP with step initial condition. Comm. Math. Phys. 290 (1) (2009) 129-154. · Zbl 1184.60036 · doi:10.1007/s00220-009-0761-0
[47] O. H. Warren and J. N. Elgin. The vector nonlinear Schrödinger hierarchy. Phys. D 228 (2) (2007) 166-171. · Zbl 1115.35128 · doi:10.1016/j.physd.2007.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.