×

Heavy-tailed phase-type distributions: a unified approach. (English) Zbl 1493.60027

Summary: A phase-type distribution is the distribution of the time until absorption in a finite state-space time-homogeneous Markov jump process, with one absorbing state and the rest being transient. These distributions are mathematically tractable and conceptually attractive to model physical phenomena due to their interpretation in terms of a hidden Markov structure. Three recent extensions of regular phase-type distributions give rise to models which allow for heavy tails: discrete- or continuous-scaling; fractional-time semi-Markov extensions; and inhomogeneous time-change of the underlying Markov process. In this paper, we present a unifying theory for heavy-tailed phase-type distributions for which all three approaches are particular cases. Our main objective is to provide useful models for heavy-tailed phase-type distributions, but any other tail behavior is also captured by our specification. We provide relevant new examples and also show how existing approaches are naturally embedded. Subsequently, two multivariate extensions are presented, inspired by the univariate construction which can be considered as a matrix version of a frailty model. We provide fully explicit EM-algorithms for all models and illustrate them using synthetic and real-life data.

MSC:

60E05 Probability distributions: general theory
60G70 Extreme value theory; extremal stochastic processes
62N02 Estimation in survival analysis and censored data
62F10 Point estimation
60J22 Computational methods in Markov chains

References:

[1] Albrecher, H.; Bladt, M., Inhomogeneous phase-type distributions and heavy tails, J. Appl. Probab., 56, 4, 1044-1064 (2019) · Zbl 1428.62103 · doi:10.1017/jpr.2019.60
[2] Albrecher, H.; Bladt, M.; Bladt, M., Matrix Mittag-Leffler distributions and modeling heavy-tailed risks, Extremes, 23, 3, 425-450 (2020) · Zbl 1450.62044 · doi:10.1007/s10687-020-00377-0
[3] Albrecher, H.; Bladt, M.; Bladt, M., Multivariate fractional phase-type distributions, Fractional Calculus and Applied Analysis, 23, 5, 1431-1451 (2020) · Zbl 1474.60025 · doi:10.1515/fca-2020-0071
[4] Albrecher, H.; Bladt, M.; Bladt, M., Multivariate matrix Mittag-Leffler distributions, Ann. Inst. Stat. Math., 73, 2, 369-394 (2021) · Zbl 1469.62258 · doi:10.1007/s10463-020-00750-7
[5] Albrecher, H., Bladt, M., Bladt, M., Yslas, J.: Continuous scaled phase-type distributions. (2021) https://arxiv.org/abs/2103.02965 · Zbl 1469.62258
[6] Albrecher, H., Bladt, M., Bladt, M., Yslas, J.: Mortality modeling and regression with matrix distributions. (2021) https://arxiv.org/abs/2011.03219 · Zbl 1469.62258
[7] Albrecher, H., Bladt, M., Yslas, J.: Fitting inhomogeneous phase-type distributions to data: The univariate and the multivariate case. Scandinavian J. Stat. pages 1-34 (2020)
[8] Asmussen, S.; Nerman, O.; Olsson, M., Fitting phase-type distributions via the EM algorithm, Scand. J. Stat., 23, 4, 419-441 (1996) · Zbl 0898.62104
[9] Bladt, M.: Fractional inhomogeneous multi-state models in life insurance. Scandinavian Actuarial Journal, to appear (2021)
[10] Bladt, M.; Gonzalez, A.; Lauritzen, SL, The estimation of phase-type related functionals using Markov chain Monte Carlo methods, Scand. Actuar. J., 2003, 4, 280-300 (2003) · Zbl 1090.62102 · doi:10.1080/03461230110106435
[11] Bladt, M., Nielsen, B.F.: Matrix-Exponential Distributions in Applied Probability. Springer (2017) · Zbl 1375.60002
[12] Bladt, M.; Nielsen, BF; Samorodnitsky, G., Calculation of ruin probabilities for a dense class of heavy tailed distributions, Scand. Actuar. J., 2015, 7, 573-591 (2015) · Zbl 1401.62204 · doi:10.1080/03461238.2013.865257
[13] Bladt, M.; Rojas-Nandayapa, L., Fitting phase-type scale mixtures to heavy-tailed data and distributions, Extremes, 21, 2, 285-313 (2018) · Zbl 1396.60017 · doi:10.1007/s10687-017-0306-4
[14] Bladt, M., Yslas, J.: matrixdist: An R package for inhomogeneous phase-type distributions. (2021) https://arxiv.org/abs/2101.07987
[15] Engelke, S.; Opitz, T.; Wadsworth, J., Extremal dependence of random scale constructions, Extremes, 22, 4, 623-666 (2019) · Zbl 1427.60097 · doi:10.1007/s10687-019-00353-3
[16] Furman, E.; Kye, Y.; Su, J., Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type, Insurance Math. Econom., 96, 153-167 (2021) · Zbl 1460.91221 · doi:10.1016/j.insmatheco.2020.11.007
[17] Manatunga, AK; Oakes, D., Parametric analysis for matched pair survival data, Lifetime Data Anal., 5, 4, 371-387 (1999) · Zbl 0941.62107 · doi:10.1023/A:1009692210273
[18] Mardia, KV, Multivariate Pareto distributions, Ann. Math. Stat., 33, 3, 1008-1015 (1962) · Zbl 0109.13303 · doi:10.1214/aoms/1177704468
[19] Missov, TI, Gamma-Gompertz life expectancy at birth, Demogr. Res., 28, 259-270 (2013) · doi:10.4054/DemRes.2013.28.9
[20] Rojas-Nandayapa, L.; Xie, W., Asymptotic tail behaviour of phase-type scale mixture distributions, Annals of Actuarial Science, 12, 2, 412-432 (2018) · doi:10.1017/S1748499517000136
[21] Su, C.; Chen, Y., On the behavior of the product of independent random variables, Science in China Series A, 49, 3, 342-359 (2006) · Zbl 1106.60018 · doi:10.1007/s11425-006-0342-z
[22] Vaupel, JW; Manton, KG; Stallard, E., The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 3, 439-454 (1979) · doi:10.2307/2061224
[23] Wienke, A.: Frailty Models in Survival Analysis. CRC Press (2010)
[24] Yashin, AI; Vaupel, JW; Iachine, IA, Correlated individual frailty: an advantageous approach to survival analysis of bivariate data, Math. Popul. Stud., 5, 2, 145-159 (1995) · Zbl 0873.62121 · doi:10.1080/08898489509525394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.