×

On double coset decompositions of real reductive groups for reductive absolutely spherical subgroups. (English) Zbl 1493.22017

Baklouti, Ali (ed.) et al., Geometric and harmonic analysis on homogeneous spaces and applications. TJC 2019, Djerba, Selected papers based on the presentations at the 6th Tunisian-Japanese conference. In honor of Professor Takaaki Nomura. Tunisia, December 15–19, 2019. Cham: Springer. Springer Proc. Math. Stat. 366, 229-267 (2021).
In the paper under review the author studies the double coset decomposition \(H\backslash G/L\) of a real reductive Lie group \(G\) with respect to reductive absolutely spherical subgroups \(H\) and \(L\). By the induction combined with computations for some minimal cases and reductions of some double coset spaces to more smaller groups, the author describes generic double cosets for reductive absolutely spherical pairs with some exceptions. The exceptional cases to which the argument of this article cannot be applied arise from some factorizations of type \(D_4\)-groups.
For the entire collection see [Zbl 1477.43001].

MSC:

22E46 Semisimple Lie groups and their representations
22F30 Homogeneous spaces
53C30 Differential geometry of homogeneous manifolds
Full Text: DOI

References:

[1] Akhiezer, D., On Lie algebra decompositions, related to spherical homogeneous spaces, Manuscripta Math., 80, 1, 81-88 (1993) · Zbl 0797.17002 · doi:10.1007/BF03026538
[2] Anisimov, A., Spherical subgroups and double coset varieties, J. Lie Theory, 22, 2, 505-522 (2012) · Zbl 1243.14043
[3] Brion, M., Classification des espaces homogenes spheriques, Compositio Math., 63, 2, 189-208 (1987) · Zbl 0642.14011
[4] Dadok, J., Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc., 288, 1, 125-137 (1985) · Zbl 0565.22010 · doi:10.1090/S0002-9947-1985-0773051-1
[5] Danielsen, T.; Krötz, B.; Schlichtkrull, H., Decomposition theorems for triple spaces, Geom. Dedicata, 174, 145-154 (2015) · Zbl 1309.22020 · doi:10.1007/s10711-014-0008-x
[6] M. Flensted-Jensen, Spherical functions of a real semisimple Lie group. A method of reduction to the complex case. J. Funct. Anal. 30(1), 106-146 (1978) · Zbl 0419.22019
[7] E. Heintze, R. Palais, C. Terng, G. Thorbergsson, Hyperpolar actions on symmetric spaces. Geometry, Topology, & Physics, pp. 214-245, Conference Proceedings of the Lecture Notes Geometry Topology, IV, International Press, Cambridge, MA (1995) · Zbl 0871.57035
[8] Helminck, AG; Schwarz, GW, Orbits and invariants associated with a pair of commuting involutions, Duke Math. J., 106, 2, 237-279 (2001) · Zbl 1015.20031 · doi:10.1215/S0012-7094-01-10622-4
[9] A.G. Helminck, G.W. Schwarz, Orbits and invariants associated with a pair of spherical varieties: some examples. The 2000 Twente Conference on Lie Groups (Enschede). Acta Appl. Math. 73(1-2), 103-113 (2002) · Zbl 1053.20042
[10] Helminck, AG; Schwarz, GW, Real double coset spaces and their invariants, J. Algebra, 322, 1, 219-236 (2009) · Zbl 1176.22007 · doi:10.1016/j.jalgebra.2009.01.028
[11] B. Hoogenboom, Intertwining functions on compact Lie groups. CWI Tract, 5, Math. Centrum, Centrum Wisk. Inform., Amsterdam (1984) · Zbl 0553.43005
[12] Knop, F.; Krötz, B.; Sayag, E.; Schlichtkrull, H., Simple compactifications and polar decomposition of homogeneous real spherical spaces, Selecta Math., 21, 3, 1071-1097 (2015) · Zbl 1346.14121 · doi:10.1007/s00029-014-0174-6
[13] Knop, F.; Krötz, B.; Pecher, T.; Schlichtkrull, H., Classification of reductive real spherical pairs I: the simple case, Transform. Groups, 24, 1, 67-114 (2019) · Zbl 1415.22006 · doi:10.1007/s00031-017-9470-5
[14] Knop, F.; Krötz, B.; Pecher, T.; Schlichtkrull, H., Classification of reductive real spherical pairs II: the semisimple case, Transform. Groups, 24, 2, 467-510 (2019) · Zbl 1419.22008 · doi:10.1007/s00031-019-09515-w
[15] T. Kobayashi, Introduction to harmonic analysis on real spherical homogeneous spaces. Proceedings of the 3rd Summer School on Number Theory Homogeneous Spaces and Automorphic Forms in Nagano (F. Sato, ed.), 1995, 22-41 (in Japanese)
[16] Kobayashi, T., A generalized Cartan decomposition for the double coset space \((U(n_1)\times U(n_2)\times U(n_3)) \backslash U(n)/ (U(p)\times U(q))\), J. Math. Soc. Jpn., 59, 3, 669-691 (2007) · Zbl 1124.22003 · doi:10.2969/jmsj/05930669
[17] Krämer, M., Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math., 38, 129-153 (1979) · Zbl 0402.22006
[18] M. Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact. Ann. Sci. École Norm. Sup. (4) 11(2), 167-210 (1978) · Zbl 0452.43011
[19] T. Matsuki, Double coset decompositions of algebraic groups arising from two involutions. II (Japanese), Noncommutative analysis on homogeneous spaces (Kyoto, , \(S \bar{{\rm u}}\) rikaisekikenky \(\bar{{\rm u}}\) sho \(K \bar{{\rm o}}\) ky \(\bar{{\rm u}}\) roku. No. 895(1995), 98-113 (1994) · Zbl 0900.22010
[20] Matsuki, T., Double coset decompositions of algebraic groups arising from two involutions. I, J. Algebra, 175, 3, 865-925 (1995) · Zbl 0831.22002 · doi:10.1006/jabr.1995.1218
[21] Matsuki, T., Double coset decompositions of reductive Lie groups arising from two involutions, J. Algebra, 197, 1, 49-91 (1997) · Zbl 0887.22009 · doi:10.1006/jabr.1997.7123
[22] Miebach, C., Matsuki’s double coset decomposition via gradient maps, J. Lie Theory, 18, 555-580 (2008) · Zbl 1171.22003
[23] I. V. Mikityuk, Integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Mat. Sb. (N.S.) 129(171) (4), 514-534, 591 (1986) · Zbl 0621.70005
[24] Mostow, GD, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. No., 14, 31-54 (1955) · Zbl 0064.25901
[25] A.L. Onishchik, Decompositions of reductive Lie groups. Mat. Sb. (N.S.) 80(122), 553-599 (1969) · Zbl 0222.22011
[26] Oshima, T.; Matsuki, T., Orbits on affine symmetric spaces under the action of the isotropy subgroups, J. Math. Soc. Jpn., 32, 2, 399-414 (1980) · Zbl 0451.53039 · doi:10.2969/jmsj/03220399
[27] Richardson, RW, Orbits, invariants and representations associated to involutions of reductive groups, Invent. Math., 66, 287-312 (1982) · Zbl 0508.20021 · doi:10.1007/BF01389396
[28] Rossmann, W., The structure of semisimple symmetric spaces, Canad. J. Math., 31, 1, 157-180 (1979) · Zbl 0357.53033 · doi:10.4153/CJM-1979-017-6
[29] Sasaki, A., A characterization of non-tube type Hermitian symmetric spaces by visible actions, Geom. Dedicata, 145, 151-158 (2010) · Zbl 1190.32017 · doi:10.1007/s10711-009-9412-z
[30] Sasaki, A., Admissible representations, multiplicity-free representations and visible actions on non-tube type Hermitian symmetric spaces Proc, Jpn. Acad. Ser. A Math. Sci., 91, 5, 70-75 (2015) · Zbl 1333.22011
[31] Y. Tanaka, A Cartan decomposition for a reductive real spherical homogeneous space, to appear in Kyoto Journal of Mathematics · Zbl 1514.22006
[32] I. Yokota, Exceptional Lie groups. arXiv:0902.0431 [math.DG] · Zbl 0449.22004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.