×

A sharp bound for the growth of minimal graphs. (English) Zbl 1491.53012

Summary: We consider minimal graphs \(u = u(x,y) > 0\) over unbounded domains \(D \subset R^2\) bounded by a Jordan arc \(\gamma\) on which \(u = 0\). We prove a sort of reverse Phragmén-Lindelöf theorem by showing that if \(D\) contains a sector \[ S_{\lambda }=\{(r,\theta )=\{-\lambda /2<\theta<\lambda /2\},\quad \pi <\lambda \le 2\pi, \] then the rate of growth is at most \(r^{\pi /\lambda }\).

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs

References:

[1] Drasin, D., On Nevanlinna’s inverse problem, Complex Var., 37, 123-143 (1999) · Zbl 1083.30504
[2] Drasin, D.; Weitsman, A., Meromorphic functions with large sums of deficiencies, Adv. Math., 15, 93-126 (1974) · Zbl 0294.30022 · doi:10.1016/0001-8708(75)90126-7
[3] Duren, P., Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1055.31001 · doi:10.1017/CBO9780511546600
[4] Hwang, J-F, Phragmén Lindelöf theorem for the minimal surface equation, Proc. Am. Math. Soc., 104, 825-828 (1988) · Zbl 0787.35012
[5] Jenkins, H., Serrin, J.: Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation. Arch. Rat. Mech. Anal., 21, 321-342 (1965/66) · Zbl 0171.08301
[6] Lundberg, E.; Weitsman, A., On the growth of solutions to the minimal surface equation over domains containing a half plane, Calc. Var. Part. Differ. Equ., 54, 3385-3395 (2015) · Zbl 1345.49047 · doi:10.1007/s00526-015-0908-0
[7] Miklyukov, V., Some singularities in the behavior of solutions of equations of minimal surface type in unbounded domains, Math. USSR Sbornik, 44, 61-73 (1983) · Zbl 0556.49022 · doi:10.1070/SM1983v044n01ABEH000951
[8] Nitsche, JCC, On new results in the theory of minimal surfaces, Bull. Am. Mat. Soc., 71, 195-270 (1965) · Zbl 0135.21701 · doi:10.1090/S0002-9904-1965-11276-9
[9] Osserman, R., A Survey of Minimal Surfaces (1986), New York: Dover Publications Inc, New York · Zbl 0209.52901
[10] Tsuji, M., Potential Theory in Modern Function Theory (1959), Tokyo: Maruzen Co. Ltd, Tokyo · Zbl 0087.28401
[11] Weitsman, A., On the growth of minimal graphs, Indiana Univ. Math. J., 54, 617-625 (2005) · Zbl 1237.53007 · doi:10.1512/iumj.2005.54.2543
[12] Weitsman, A., Growth of solutions to the minimal surface equation over domains in a half plane, Commun. Anal. Geometry, 13, 1077-1087 (2005) · Zbl 1185.53009 · doi:10.4310/CAG.2005.v13.n5.a11
[13] Weitsman, A.: Level curves of minimal graphs. Arxiv:2008.10197, To appear in Comm. Anal. Geom. (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.