×

Background-enhanced collapse instability of optical Speckle beams in nonlocal nonlinear media. (English) Zbl 1489.78010

Summary: We study the focusing dynamics of incoherent wave-packets (speckle beams) in the presence of a nonlocal nonlinear response in the framework of the nonlocal nonlinear Schrödinger (NLS) equation. In the highly nonlocal regime, we show that the speckle beam develops a collective incoherent collapse instability – at variance with a conventional collapse that is inherently a coherent object, here it is the incoherent beam as a whole that develops a collapse. More specifically, we study the impact of a homogeneous incoherent background on the development of the incoherent collapse instability. Despite the fact that the homogeneous background is modulationally stable, we show that it significantly strengthens the formation of the incoherent collapse instability. Our theoretical analysis is based on a wave turbulence formulation of the Vlasov equation, which allows us to introduce an effective hydrodynamic model that is subsequently solved by the method of characteristics. A quantitative agreement is obtained between the simulations of the NLS equation, the Vlasov equation and the hydrodynamic model, without using adjustable parameters. The interaction between the background and the collapsing structure is described by means of a coupled system for the singular and smooth components of the solution of the Vlasov equation. The theory reveals that the mechanism underlying the background-induced collapse enhancement is due to a transfer of momentum from the background to the collapsing structure, while there is no ‘mass’ exchange among them. Furthermore, we show that a strong background level significantly boosts the collapse dynamics. Our work should stimulate the development of nonlinear experiments aimed at observing the incoherent collapse phenomenon in nonlinear thermal media. From a broader perspective, these investigations pave the way for the study of novel forms of global incoherent collective behaviors in wave turbulence, such as the formation of incoherent rogue waves.

MSC:

78A60 Lasers, masers, optical bistability, nonlinear optics
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q83 Vlasov equations
76E30 Nonlinear effects in hydrodynamic stability
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Zakharov, V. E.; L’Vov, V. S.; Falkovich, G., Kolmogorov Spectra of Turbulence I (1992), Springer: Springer Berlin · Zbl 0786.76002
[2] Dyachenko, S.; Newell, A. C.; Pushkarev, A.; Zakharov, V. E., Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Physica D, 57, 96 (1992) · Zbl 0767.35082
[3] Newell, A. C.; Nazarenko, S.; Biven, L., Wave turbulence and intermittency, Physica D, 152, 520 (2001) · Zbl 1049.76033
[4] Zakharov, V.; Dias, F.; Pushkarev, A., One-dimensional wave turbulence, Phys. Rep., 398, 1-65 (2004)
[5] Nazarenko, S., (Wave Turbulence. Wave Turbulence, Lectures Notes in Physics (2011), Springer) · Zbl 1220.76006
[6] Newell, A. C.; Rumpf, B., Wave turbulence, Annu. Rev. Fluid Mech., 43, 59-78 (2011) · Zbl 1299.76006
[7] Laurie, J.; Bortolozzo, U.; Nazarenko, S.; Residori, S., One-dimensional optical wave turbulence: Experiment and theory, Phys. Rep., 514, 121-175 (2012)
[8] Picozzi, A.; Garnier, J.; Hansson, T.; Suret, P.; Randoux, S.; Millot, G.; Christodoulides, D., Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics, Phys. Rep., 542, 1-132 (2014)
[9] Galtier, S.; Nazarenko, S. V., Turbulence of weak gravitational waves in the early universe, Phys. Rev. Lett., 119, Article 221101 pp. (2017)
[10] Galtier, S.; Nazarenko, S. V., Direct evidence of a dual cascade in gravitational wave turbulence, Phys. Rev. Lett., 127, Article 131101 pp. (2021)
[11] L’vov, V. S.; L’vov, Y.; Newell, A. C.; Zakharov, V., Statistical description of acoustic turbulence, Phys. Rev. E, 56, 405 (1997)
[12] Newell, A. C.; Rumpf, B.; Zakharov, V. E., Spontaneous breaking of the spatial homogeneity symmetry in wave turbulence, Phys. Rev. Lett., 108, Article 194502 pp. (2012)
[13] Turitsyna, E.; Falkovich, G.; El-Taher, A.; Shu, X.; Harper, P.; Turitsyn, S., Optical turbulence and spectral condensate in long fibre lasers, Proc. R. Soc. Lond. Ser. A, 468, 2145 (2012) · Zbl 1371.78307
[14] Turitsyna, E.; Smirnov, S.; Sugavanam, S.; Tarasov, N.; Shu, X.; Babin, S.; Podivilov, E.; Churkin, D.; Falkovich, G.; Turitsyn, S., The laminar-turbulent transition in a fibre laser, Nat. Photon., 7, 783 (2013)
[15] Churkin, D. V.; Kolokolov, I. V.; Podivilov, E. V.; Vatnik, I. D.; Vergeles, S. S.; Terekhov, I. S.; Lebedev, V. V.; Falkovich, G.; Nikulin, M. A.; Babin, S. A.; Turitsyn, S. K., Wave kinetics of a random fibre laser, Nature Commun., 6, 6214 (2015)
[16] Conforti, M.; Mussot, A.; Fatome, J.; Picozzi, A.; Pitois, S.; Finot, C.; Haelterman, M.; Kibler, B.; Michel, C.; Millot, G., Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events, Phys. Rev. A, 91, Article 023823 pp. (2015)
[17] White, A. C.; Anderson, B. P.; Bagnato, V. S., Vortices and turbulence in trapped atomic condensates, Proc. Natl. Acad. Sci. USA, 111, 4719-4726 (2014)
[18] Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F. T., Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep., 528, 47-89 (2013)
[19] Zakharov, V. E.; Nazarenko, S. V., Dynamics of the Bose-Einstein condensation, Physica D, 201, 203 (2005) · Zbl 1067.81029
[20] Connaughton, C.; Josserand, C.; Picozzi, A.; Pomeau, Y.; Rica, S., Condensation of classical nonlinear waves, Phys. Rev. Lett., 95, Article 263901 pp. (2005)
[21] Nazarenko, S.; Onorato, M., Wave turbulence and vortices in Bose-Einstein condensation, Physica D, 219, 1 (2006) · Zbl 1107.35103
[22] Krstulovic, G.; Brachet, M., Dispersive Bottleneck delaying thermalization of turbulent Bose-Einstein condensates, Phys. Rev. Lett., 106, Article 115303 pp. (2011)
[23] Nazarenko, S.; Onorato, M.; Proment, D., Bose-Einstein condensation and Berezinskii-Kosterlitz-Thouless transition in the two-dimensional nonlinear Schrödinger model, Phys. Rev. A, 90, Article 013624 pp. (2014)
[24] Fusaro, A.; Garnier, J.; Krupa, K.; Millot, G.; Picozzi, A., Dramatic acceleration of wave condensation mediated by disorder in multimode fibers, Phys. Rev. Lett., 122, Article 123902 pp. (2019)
[25] Baudin, K.; Fusaro, A.; Krupa, K.; Garnier, J.; Rica, S.; Millot, G.; Picozzi, A., Classical Rayleigh-jeans condensation of light waves: Observation and thermodynamic characterization, Phys. Rev. Lett., 125, Article 244101 pp. (2020)
[26] Rumpf, B.; Newell, A. C., Coherent structures and entropy in constrained, modulationally unstable, nonintegrable, systems, Phys. Rev. Lett., 87, Article 054102 pp. (2001)
[27] Rumpf, B.; Newell, A. C.; Zakharov, V. E., Turbulent transfer of energy by radiating pulses, Phys. Rev. Lett., 103, Article 074502 pp. (2009)
[28] Josserand, C.; Pomeau, Y.; Rica, S., Finite-time localized singularities as a mechanism for turbulent dissipation, Phys. Rev. Fluids, 5, Article 054607 pp. (2020)
[29] Bergé, L., Wave collapse in physics: principles and applications to light and plasma waves, Phys. Rep., 303, 259 (1998)
[30] Kivshar, Y. S.; Pelinovsky, D. E., Self-focusing and transverse instabilities of solitary waves, Phys. Rep., 331, 117 (2000)
[31] Sulem, C.; Sulem, P., The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse (1999), Springer · Zbl 0928.35157
[32] Fibich, G., The Nonlinear Schrödinger Equation, Singular Solutions and Optical Collapse (2015), Springer · Zbl 1351.35001
[33] Zakharov, V. E., Collapse of langmuir waves, Sov. Phys.—JETP, 35, 908 (1972)
[34] Kosmatov, N.; Zakharov, V.; Shvets, V., Computer simulation of wave collapses in the nonlinear Schrödinger equation, Physica D., 52, 16 (1991) · Zbl 0735.76085
[35] Wong, A.; Cheung, P., Three-dimensional self-collapse of langmuir waves, Phys. Rev. Lett., 52, 1222 (1984)
[36] Sackett, C.; Gerton, J.; Welling, M.; Hulet, R., Measurements of collective collapse in a Bose-Einstein condensate with attractive interactions, Phys. Rev. Lett., 82, 876 (1999)
[37] Sakaguchi, H.; Malomed, B. A., Suppression of the quantum-mechanical collapse by repulsive interactions in a quantum gas, Phys. Rev. A, 83, Article 013607 pp. (2011)
[38] Banerjee, P.; Korpel, A.; Lonngren, K., Self-refraction of nonlinear capillary-gravity waves, Phys. Fluids, 26, 2393 (1983)
[39] Kivshar, Y.; Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals (2003), Academic Press
[40] Gaeta, A. L., Catastrophic collapse of ultrashort pulses, Phys. Rev. Lett., 84, 3582 (2000)
[41] Boyd, R. W.; Lukishova, S.; Shen, Y. R., (Self Focusing: Past and Present. Self Focusing: Past and Present, Topics in Applied Physics, vol. 114 (2009), Springer: Springer New York)
[42] Shapiro, S. L.; Teukolsky, S. A., Black Holes, White Dwarfs and Neutron Stars - the Physics of Compact Objects (1983), John Wiley and Sons: John Wiley and Sons New York
[43] Skupin, S.; Saffman, M.; Królikowski, W., Nonlocal stabilization of nonlinear beams in a self-focusing atomic vapor, Phys. Rev. Lett., 98, Article 263902 pp. (2007)
[44] Linzon, Y.; Rutkowska, K. A.; Malomed, B. A.; Morandotti, R., Magneto-optical control of light collapse in bulk Kerr media, Phys. Rev. Lett., 103, Article 053902 pp. (2009)
[45] Desyatnikov, A. S.; Buccoliero, D.; Dennis, M. R.; Kivshar, Y. S., Suppression of collapse for spiralling elliptic solitons, Phys. Rev. Lett., 104, Article 053902 pp. (2010)
[46] Shim, B.; Schrauth, S. E.; Gaeta, A. L.; Klein, M.; Fibich, G., Loss of phase of collapsing beams, Phys. Rev. Lett., 108, Article 043902 pp. (2012)
[47] Feit, M. D.; Fleck, J. A., Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Amer. B, 5, 623 (1988)
[48] Pasmanik, G. A., Self-interaction of incoherent light beams, Zh. Eksp. Teor. Fiz.. Zh. Eksp. Teor. Fiz., Sov. Phys. JETP, 39, 234 (1974)
[49] Aleshkevich, V. A.; Lebedev, S. S.; Matveev, A. N., Self-interaction of a noncoherent light beam, Sov. J. Quantum Electron., 11, 647 (1981)
[50] Bang, O.; Edmundson, D.; Królikowski, W., Collapse of incoherent light beams in inertial Bulk Kerr media, Phys. Rev. Lett., 83, 5479 (1999)
[51] Turitsyn, S., Spatial dispersion of nonlinearity and stability of multidimensional solitons, Theor. Math. Phys., 64, 226 (1985)
[52] Bang, O.; Krolikowski, W.; Wyller, J.; Rasmussen, J. J., Collapse arrest and soliton stabilization in nonlocal nonlinear media, Phys. Rev. E, 66, Article 046619 pp. (2002)
[53] Ye, F.; Malomed, B. A.; He, Y.; Hu, B., Collapse suppression and stabilization of dipole solitons in two-dimensional media with anisotropic semilocal nonlinearity, Phys. Rev. A, 81, Article 043816 pp. (2010)
[54] Baranov, M., Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep., 464, 71 (2008)
[55] Azam, P.; Fusaro, A.; Fontaine, Q.; Garnier, J.; Bramati, A.; Picozzi, A.; Kaiser, R.; Glorieux, Q.; Bienaimé, T., Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor, Phys. Rev. A, 104, Article 013515 pp. (2021)
[56] Krolikowski, W.; Bang, O.; Rasmussen, J. J.; Wyller, J., Modulational instability in nonlocal nonlinear Kerr media, Phys. Rev. E, 64, Article 016612 pp. (2001)
[57] Krolikowski, W.; Bang, O.; Nikolov, N. I.; Neshev, D.; Wyller, J.; Rasmussen, J. J.; Edmundson, D., Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media, J. Opt. B: Quant. Semicl. Opt., 6, S288 (2004)
[58] Peccianti, M.; Conti, C.; Assanto, G.; De Luca, A.; Umeton, C., Routing of anisotropic spatial solitons and modulational instability in liquid crystals, Nature, 432, 733-737 (2004)
[59] Conti, C.; Peccianti, M.; Assanto, G., Observation of optical spatial solitons in a highly nonlocal medium, Phys. Rev. Lett., 92, Article 113902 pp. (2004)
[60] Peccianti, M.; Assanto, G., Nematicons, Phys. Rep., 516, 147 (2012)
[61] Alfassi, B.; Rotschild, C.; Manela, O.; Segev, M.; Christodoulides, D., Boundary force effects exerted on solitons in highly nonlinear media, Opt. Lett., 32, 154 (2007)
[62] Rotschild, C.; Cohen, O.; Manela, O.; Segev, M.; Carmon, T., Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons, Phys. Rev. Lett., 95, Article 213904 pp. (2015)
[63] Shou, Q.; Wu, M.; Guo, Q., Large phase shift of (1+1)-dimensional nonlocal spatial solitons in lead glass, Opt. Commun., 338, 133 (2014)
[64] Rotschild, C.; Alfassi, B.; Manela, O.; Segev, M., Long-range interactions between optical solitons, Nat. Phys., 2, 769 (2006)
[65] Ghofraniha, N.; Conti, C.; Ruocco, G.; Trillo, S., Shocks in nonlocal media, Phys. Rev. Lett., 99, Article 043903 pp. (2007)
[66] Conti, C.; Fratalocchi, A.; Peccianti, M.; Ruocco, G.; Trillo, S., Observation of a gradient catastrophe generating solitons, Phys. Rev. Lett., 102, Article 083902 pp. (2009)
[67] Ghofraniha, N.; Amato, L. S.; Folli, V.; Trillo, S.; DelRe, E.; Conti, C., Measurement of scaling laws for shock waves in thermal nonlocal media, Opt. Lett., 37, 2325 (2012)
[68] Xu, G.; Vocke, D.; Faccio, D.; Garnier, J.; Roger, T.; Trillo, S.; Picozzi, A., From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows, Nature Commun., 18, 947 (2015)
[69] Karpov, M.; Congy, T.; Sivan, Y.; Fleurov, V.; Pavloff, N.; Bar-Ad, S., Spontaneously formed autofocusing caustics in a confined self-defocusing medium, Optica, 2, 1053 (2015)
[70] Vocke, D.; Roger, T.; Marino, F.; Wright, E. M.; Carusotto, I.; Clerici, M.; Faccio, D., Experimental characterization of nonlocal photon fluids, Optica, 2, 484 (2015)
[71] Braidotti, M. C.; Gentilini, S.; Conti, C., Gamow vectors explain the shock profile, Opt. Express, 24, 21963 (2016)
[72] El, G. A.; Smyth, N. F., Radiating dispersive shock waves in non-local optical media, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 472, Article 20150633 pp. (2016) · Zbl 1371.78043
[73] Vocke, D.; Wilson, K.; Marino, F.; Carusotto, I.; Wright, E. M.; Roger, T.; Anderson, B. P.; Öhberg, P.; Faccio, D., Role of geometry in the superfluid flow of nonlocal photon fluids, Phys. Rev. A, 94, Article 013849 pp. (2016)
[74] Marcucci, G.; Pierangeli, D.; Gentilini, S.; Ghofraniha, N.; Chen, Z.; Conti, C., Optical spatial shock waves in nonlocal nonlinear media, Adv. Phys. X, 4, Article 1662733 pp. (2019)
[75] Marcucci, G.; Hu, X.; Cala, P.; Man, W.; Pierangeli, D.; Conti, C.; Chen, Z., Anisotropic optical shock waves in isotropic media with giant nonlocal nonlinearity, Phys. Rev. Lett., 125, Article 243902 pp. (2020)
[76] Zakharov, V.; Musher, S.; Rubenchik, A., Hamiltonian approach to the description of non-linear plasma phenomena, Phys. Rep., 129, 285 (1985)
[77] Bekenstein, R.; Schley, R.; Mutzafi, M.; Rotschild, C.; Segev, M., Optical simulations of gravitational effects in the Newton-Schrödinger system, Nat. Phys., 11, 872-878 (2015)
[78] Roger, T.; Maitland, C.; Wilson, K.; Westerberg, N.; Vocke, D.; Wright, E. M.; Faccio, D., Optical analogues of the Newton-Schrödinger equation and boson star evolution, Nat. Commun., 7, 13492 (2016)
[79] Marino, F., Massive phonons and gravitational dynamics in a photon-fluid model, Phys. Rev. A, 100, Article 063825 pp. (2019)
[80] Skipp, J.; L’vov, V.; Nazarenko, S., Wave turbulence in self-gravitating Bose gases and nonlocal nonlinear optics, Phys. Rev. A, 102, Article 043318 pp. (2020)
[81] Paredes, A.; Olivieri, D. N.; Michinel, H., From optics to dark matter: A review on nonlinear Schrödinger-Poisson systems, Physica D, 403, Article 132301 pp. (2020) · Zbl 1487.83074
[82] Garnier, J.; Baudin, K.; Fusaro, A.; Picozzi, A., Coherent soliton states hidden in phase-space and stabilized by gravitational incoherent halos, Phys. Rev. Lett., 127, Article 014101 pp. (2021)
[83] Garnier, J.; Baudin, K.; Fusaro, A.; Picozzi, A., Incoherent localized structures and hidden coherent solitons from the gravitational instability of the Schrödinger-Poisson equation, Phys. Rev. E, 104, Article 054205 pp. (2021)
[84] Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D., Dispersive hydrodynamics, Physica D, 333, 1 (2016) · Zbl 1415.00009
[85] Onorato, M.; Resitori, S.; Baronio, F., (Onorato, M.; Resitori, S.; Baronio, F., Rogue and Shock Waves in Nonlinear Dispersive Media. Rogue and Shock Waves in Nonlinear Dispersive Media, Lecture Notes in Physics, vol. 926 (2016), Springer International Publishing)
[86] El, G. A.; Hoefer, M. A., Dispersive shock waves and modulation theory, Physica D, 333, 11 (2016) · Zbl 1415.76001
[87] Miller, P. D., On the generation of dispersive shock waves, Physica D, 333, 66 (2016) · Zbl 1415.35046
[88] Romagnani, L.; Bulanov, S. V.; Borghesi, M.; Audebert, P.; Gauthier, J. C.; Löwenbrück, K.; Mackinnon, A. J.; Patel, P.; Pretzler, G.; Toncian, T.; Willi, O., Observation of collisionless shocks in laser-plasma experiments, Phys. Rev. Lett., 101, Article 025004 pp. (2008)
[89] Hoefer, M. A.; Ablowitz, M. J.; Coddington, I.; Cornell, E. A.; Engels, P.; Schweikhard, V., Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics, Phys. Rev. A, 74, Article 023623 pp. (2006)
[90] Wan, W.; Jia, S.; Fleischer, J. W., Dispersive superfluid-like shock waves in nonlinear optics, Nat. Phys., 3, 46 (2007)
[91] Ivanov, S. K.; Suchorski, J.-E.; Kamchatnov, A. M.; Isoard, M.; Pavloff, N., Formation of dispersive shock waves in a saturable nonlinear medium, Phys. Rev. E, 102, Article 032215 pp. (2020)
[92] Xu, G.; Mussot, A.; Kudlinski, A.; Trillo, S.; Copie, F.; Conforti, M., Shock wave generation triggered by a weak background in optical fibers, Opt. Lett., 41, 2656 (2016)
[93] Fatome, J.; Finot, C.; Millot, G.; Armaroli, A.; Trillo, S., Observation of optical undular bores in multiple four-wave mixing, Phys. Rev. X, 4, Article 021022 pp. (2014)
[94] Trillo, S.; Conforti, M., Handbook of Optical Fibers, 1-48 (2017), Springer: Springer Singapore
[95] Xu, G.; Conforti, M.; Kudlinski, A.; Mussot, A.; Trillo, S., Dispersive dam-break flow of a photon fluid, Phys. Rev. Lett., 118, Article 254101 pp. (2017)
[96] Trillo, S.; Totero Gongora, J. S.; Fratalocchi, A., Wave instabilities in the presence of nonvanishing background in nonlinear Schrödinger systems, Sci. Rep., 4, 7285 (2014)
[97] Picozzi, A.; Garnier, J., Incoherent soliton turbulence in nonlocal nonlocal nonlinear media, Phys. Rev. Lett., 107, Article 233901 pp. (2011)
[98] Xu, G.; Garnier, J.; Faccio, D.; Trillo, S.; Picozzi, A., Incoherent shock waves in long-range optical turbulence, Physica D, 333, 310 (2016) · Zbl 1415.78005
[99] Segev, M.; Christodoulides, D., Incoherent solitons, (Trillo, S.; Torruellas, W., Spatial Solitons (2001), Springer: Springer Berlin)
[100] Lvov, V. S.; Rubenchik, A. M., Spatially non-uniform singular weak turbulence spectra, Sov. Phys.—JETP, 45, 67 (1977)
[101] Zakharov, V. E.; Musher, S. L.; Rubenchik, A. M., Hamiltonian approach to the description of non-linear plasma phenomena, Phys. Rep., 129, 285-366 (1985)
[102] Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S., Physics of Long-Range Interacting Systems (2014), Oxford Univ. Press · Zbl 1303.82003
[103] Michel, C.; Kibler, B.; Garnier, J.; Picozzi, A., Temporal incoherent solitons supported by a defocusing nonlinearity with anomalous dispersion, Phys. Rev. A, 86, Article R041801 pp. (2012)
[104] Xu, G.; Fusaro, A.; Garnier, J.; Picozzi, A., Incoherent shock and collapse singularities in non-instantaneous nonlinear media, Appl. Sci., 8, 2559 (2018)
[105] Balescu, R., Equilibrium and Nonequilibrium Statistical Mechanics (1975), Wiley · Zbl 0984.82500
[106] Vedenov, A.; Rudakov, L., Interaction of waves in continuous media, Sov. Phys. Dokl., 9, 1073 (1965)
[107] Soljacic, M.; Segev, M.; Coskun, T.; Christodoulides, D.; Vishwanath, A., Modulation instability of incoherent beams in noninstantaneous nonlinear media, Phys. Rev. Lett., 84, 467 (2000)
[108] Kip, D.; Soljacic, M.; Segev, M.; Eugenieva, E.; Christodoulides, D. N., Modulation instability and pattern formation in spatially incoherent light beams, Science, 290, 495-498 (2000)
[109] Hall, B.; Lisak, M.; Anderson, D.; Fedele, R.; Semenov, V. E., Statistical theory for incoherent light propagation in nonlinear media, Phys. Rev. E, 65, Article 035602 pp. (2002)
[110] Evans, L. C., Partial Differential Equations (2002), AMS: AMS Providence
[111] Dudley, J.; Dias, F.; Erkintalo, M.; Genty, G., Instability, breathers and rogue waves in optics, Nat. Photon., 8, 755 (2014)
[112] Kuznetsov, E. A., Solitons in a parametrically unstable plasma, Sov. Phys. Dokl., 22, 507-508 (1977)
[113] Ma, Y. C., The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math., 60, 43 (1979) · Zbl 0412.35028
[114] Akhmediev, N.; Eleonskii, V. M.; Kulagin, N. E., Exact first-order solutions of the nonlinear Schrödinger equation, Theoret. Math. Phys., 72, 809-818 (1987) · Zbl 0656.35135
[115] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J. M., The peregrine soliton in nonlinear fibre optics, Nat. Phys., 6, 790 (2010)
[116] Erkintalo, M.; Hammani, K.; Kibler, B.; Finot, C.; Akhmediev, N.; Dudley, J. M.; Genty, G., Higher-order modulation instability in nonlinear fiber optics, Phys. Rev. Lett., 107, Article 253901 pp. (2011)
[117] Toenger, S.; Godin, T.; Billet, C.; Dias, F.; Erkintalo, M.; Genty, G.; Dudley, J. M., Emergent rogue wave structures and statistics in spontaneous modulation instability, Sci. Rep., 5, 10380 (2015)
[118] Chabchoub, A.; Hoffmann, N. P.; Akhmediev, N., Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106, Article 204502 pp. (2011)
[119] Chabchoub, A.; Hoffmann, N.; Onorato, M.; Akhmediev, N., Super rogue waves: Observation of a higher-order breather in water waves, Phys. Rev. X, 2, Article 011015 pp. (2012)
[120] Zakharov, V. E.; Gelash, A. A., Nonlinear stage of modulation instability, Phys. Rev. Lett., 111, Article 054101 pp. (2013)
[121] Kibler, B.; Chabchoub, A.; Gelash, A.; Akhmediev, N.; Zakharov, V. E., Super-regular breathers in optics and hydrodynamics: Omnipresent modulation instability beyond simple periodicity, Phys. Rev. X, 5, Article 041026 pp. (2015)
[122] Xu, G.; Gelash, A.; Chabchoub, A.; Zakharov, V.; Kibler, B., Breather wave molecules, Phys. Rev. Lett., 122, Article 084101 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.