×

Multifractal analysis of geodesic flows on surfaces without focal points. (English) Zbl 1489.37043

Let \(S\) be a closed Riemannian surface without focal points and \(g_t\) be the corresponding geodesic flow on its unit tangent bundle. Denote by \(E^u_v\) the unstable space of the unit vector \(v\). Recall that the geometric potential is defined as
\[ \varphi^{\mathrm{geo}}(v)=-\lim_{t\rightarrow 0}\frac{1}{t} \log \left\lVert dg_t |_{E_v^u} \right\rVert. \] Let \(\mathcal P(t)\) stand for the pressure of \(t\varphi^{\mathrm{geo}}\) and \(\mathcal E\) for the Legendre transform of \(\mathcal P\). The Lyapunov level set \(\mathcal L(\beta)\) is defined as the set of those \(v\) such that \(\chi(v)=\beta\), being \(\chi(v)\) be the Lyapunov exponent of \(v\). Let \(h(\mathcal L(\beta))\) denote the topological entropy of \(\mathcal L(\beta)\) and \(\dim_H(\mathcal L(\beta))\) the Hausdorff dimension of \(\mathcal L(\beta)\). Set \(\alpha_1=\lim_{t \rightarrow-\infty} D^+ \mathcal P(t)\), where \(D^+\) denotes the right derivative.
In the main result of the article the authors show that if \(S\) is a rank-1 Riemannian surface with no focal points then the Lyapunov level set \(\mathcal L(-\alpha)\) is non empty if and only if \(\alpha\in [\alpha_1, 0]\). It is also shown that if \(\alpha\in (\alpha_1, 0)\) then \(h(\mathcal L(-\alpha))=\mathcal E(\alpha)\) and \(\dim_H(\mathcal L(-\alpha))\geq 1-2\mathcal E(\alpha)/\alpha\) .
These results extend previous work by K. Burns and K. Gelfert [Discrete Contin. Dyn. Syst. 34, No. 5, 1841–1872 (2014; Zbl 1325.37018)] for non-positively curved surfaces .

MSC:

37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37E35 Flows on surfaces

Citations:

Zbl 1325.37018

References:

[1] Anosov, D. V., Extension of zero-dimensional hyperbolic sets to locally maximal ones, Sbornik: Math., 201, 7, 935-946 (2010) · Zbl 1209.37027
[2] Barreira, L.; Doutor, P., Birkhoff averages for hyperbolic flows: Variational principles and applications, J. Stat. Phys., 115, 1567-1603 (2004) · Zbl 1157.37307
[3] Barreira, L.; Saussol, B., Variational principles and mixed multifractal spectra, Trans. Am. Math. Soc., 353, 10, 3919-3944 (2001) · Zbl 0981.37007
[4] Bowen, R., Topological entropy for noncompact sets, Trans. Am. Math. Soc., 184, 125-136 (1973) · Zbl 0274.54030
[5] Burns, K.; Climenhaga, V.; Fisher, T.; Thompson, D. J., Unique equilibrium states for geodesic flows in nonpositive curvature, Geometric Funct. Anal., 28, 5, 1209-1259 (2018) · Zbl 1401.37038
[6] Burns, K.; Gelfert, K., Lyapunov spectrum for geodesic flows of rank 1 surfaces, Discrete Contin. Dyn. Syst., 34, 5, 1841-1872 (2014) · Zbl 1325.37018
[7] Chen, D.; Kao, L.-Y.; Park, K., Unique equilibrium states for geodesic flows over surfaces without focal points, Nonlinearity, 33, 3, 1118-1155 (2020) · Zbl 1437.37043
[8] Chen, D.; Kao, L.-Y.; Park, K., Properties of equilibrium states for geodesic flows over manifolds without focal points, Adv. Math. (N.Y.), 380 (2021) · Zbl 1461.37036
[9] Climenhaga, V., Thermodynamic formalism and multifractal analysis for general topological dynamical systems, Doctoral Thesis. · Zbl 1193.37030
[10] Climenhaga, V., Bowen’s equation in the non-uniform setting, Ergodic Theor. Dyn. Syst., 31, 4, 1163-1182 (2011) · Zbl 1230.37033
[11] Eberlein, P., When is a geodesic flow of anosov type? I, J. Differ. Geometry, 8, 3, 437-463 (1973) · Zbl 0285.58008
[12] Eschenburg, J.-H., Horospheres and the stable part of the geodesic flow, Mathematische Zeitschrift, 153, 3, 237-251 (1977) · Zbl 0332.53028
[13] Gelfert, K., Horseshoes for diffeomorphisms preserving hyperbolic measures, Mathematische Zeitschrift, 283, 3-4, 685-701 (2016) · Zbl 1373.37093
[14] Hopf, E., Closed surfaces without conjugate points, Proc. Natl. Acad. Sci. U.S.A., 34, 2, 47-51 (1948) · Zbl 0030.07901
[15] Hurley, D., Ergodicity of the Geodesic Flow on Rank One Manifolds Without Focal Points, Proceedings of the Royal Irish Academy Section A: Mathematical and Physical Sciences JSTOR, 1986. pp. 19-30 · Zbl 0641.58031
[16] Johansson, A.; Jordan, M.; Anders Öberg, T.; Pollicott, M., Multifractal analysis of non-uniformly hyperbolic systems, Israel J. Math., 177, 125-144 (2010) · Zbl 1214.37029
[17] Katok, A., Lyapunov exponents entropy, and periodic orbits for diffeomorphisms, Publications Mathématiques De L’IHÉS, 51, 137-173 (1980) · Zbl 0445.58015
[18] Knieper, G., The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. Math., 148, 291-314 (1998) · Zbl 0946.53045
[19] Liu, F.; Wang, F., Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points, Acta. Math. Sin. Engl. Ser., 32, 4, 507-520 (2016) · Zbl 1357.37056
[20] McCluskey, H.; Manning, A., Hausdorff dimension for horseshoes, Ergodic Theory and Dyn. Syst., 3, 2, 251-260 (1983) · Zbl 0529.58022
[21] Perdigao do Carmo, M., Riemannian geometry (1992), Birkhäuser, Boston · Zbl 0752.53001
[22] Pesin, Y., Geodesic flows on closed Riemannian manifolds without focal points, Mathematics of the USSR-Izvestiya, 11, 6, 1195-1228 (1977) · Zbl 0399.58010
[23] Pesin, Y., Dimension theory in dynamical systems (1997), University of Chicago Press
[24] Pesin, Y.; Weiss, H., The multifractal analysis of Birkhoff averages and large deviations, Global analysis of dynamical systems. Inst. Phys. Bristol, 419-431 (2001) · Zbl 0996.37021
[25] Walters, P., An introduction to ergodic theory, 79 (2000), Springer-Verlag · Zbl 0958.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.