×

Group action with finite orbits on local dendrites. (English) Zbl 1489.37024

A dendrite is a locally connected metrizable continuum none of whose subsets is homeomorphic to the circle. A dendrite is a metrizable dendron – a continuum \(X\) whose every pair of distinct points \(x, y\) can be separated by a third point \(z\) in \(X\). A local dendron is a continuum whose every point has a neighbourhood which is a dendron. If \(G\) is a group acting continuously on a continuum \(X\), a closed nonempty subset \(A\) of \(X\) is called minimal if \(A\) is \(G\)-invariant and minimal in inclusion sense. The minimal set can only be a circle, a Cantor set, or a finite set (see [L. A. Beklaryan, Math. Notes 71, No. 3, 305–315 (2002; Zbl 1024.22012); translation from Mat. Zametki 71, No. 3, 334–347 (2002)]). A classification of the minimal sets of the group action on dendrites and local dendrites was published in [H. Marzougui and I. Naghmouchi, Proc. Am. Math. Soc. 144, No. 10, 4413–4425 (2016; Zbl 1418.37018); Math. Z. 293, No. 3–4, 1057–1070 (2019; Zbl 1436.37011)]. Furthermore, E. Shi and X. Ye [Proc. Am. Math. Soc. 145, No. 1, 177–184 (2017; Zbl 1368.37019)] proved that countable amenable group actions on dendrites have periodic point of order not exceeding 2. They proved also that the induced action of any amenable group on any minimal set in a dendrite is equicontinuous (see [E. Shi and X. Ye, Contemp. Math. 744, 175–180 (2020; Zbl 1446.37015)]).
The present paper generalizes this result in the following way: the action with finite orbit of a group \(G\) on a dendrite \(X\), or a local dendrite \(X\), restricted to an infinite minimal set of \(X\), is equicontinuous. The authors also consider a class of non-amenable groups whose action on a dendrite has a finite orbit. It follows that, in this case, the infinite minimal sets are Cantor sets (see [H. Marzougui and the second author, Proc. Am. Math. Soc. 144, No. 10, 4413–4425 (2016; Zbl 1418.37018)]).

MSC:

37B45 Continua theory in dynamics
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B20 Notions of recurrence and recurrent behavior in topological dynamical systems
54H15 Transformation groups and semigroups (topological aspects)
54F50 Topological spaces of dimension \(\leq 1\); curves, dendrites
22A25 Representations of general topological groups and semigroups

References:

[1] el Abdalaoui, E.H. and Nerrukar, M., Weakly tame systems, their characterizations and application, Available at arXiv:2001.05947v3 [math.DS].
[2] Adyan, S. I., Random walks on free periodic groups, Izv. Akad. Nauk. SSSR, Ser, Mat., 46, 1139-1149 (1982) · Zbl 0512.60012
[3] Arevalo, D.; Charatonik, W. J.; Covarrubias, P. P.; Simon, L., Dendrites with a closed set of endpoints, Topology Appl., 115, 1-17 (2001) · Zbl 0979.54035
[4] Auslander, J., Minimal flows and their extensions, North-Holland Mathematics Studies, Vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. · Zbl 0654.54027
[5] Banach, S.; Tarski, A., Sur la décomposition des ensembles de points en parties respectivement congruentes [On decomposing point-sets into congruent parts], Fund. Math., 6, 244-277 (1924) · JFM 50.0370.02
[6] Beklaryan, L.A., On analogues of the Tits alternative for groups of homeomorphisms of the circle and the line, Math. Notes. 71 (2002), pp. 305-315. (Translation from Mat. Zametki 71 (2002), pp. 334-347). · Zbl 1024.22012
[7] Bouziad, A.; Troallic, J.-P., Some remarks about strong proximality of compact flows, Colloq. Math., 115, 2, 159-170 (2009) · Zbl 1177.54018
[8] Cannon, J. W.; Floyd, J. W.; Parry, W. R., Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), 42, 3-4, 215-256 (1996) · Zbl 0880.20027
[9] Day, M. M., Amenable semigroups, Illinois J. Math., 1, 509-544 (1957) · Zbl 0078.29402
[10] Duchesne, B.; Monod, N., Group actions on dendrites and curves, Ann. Inst. Fourier, Grenoble., 68, 5, 2277-2309 (2018) · Zbl 1408.37019
[11] Efremova, L.S. and Makhrova, E.N., The dynamics of monotone mappings of den- drites (Russian, with Russian summary), Mat. Sb. 192(6) (2001), pp. 15-30. DOI:. (English transl., Sb. Math. 192(5-6) (2001), pp. 807-821). · Zbl 1008.37009
[12] Ghys, E., Groups acting on the circle, Enseignement Math., 47, 329-407 (2001) · Zbl 1044.37033
[13] Glasner, S., Topological dynamics and group theory, Trans. Amer. Math. Soc., 187, 1, 327-334 (1974) · Zbl 0251.54023
[14] Glasner, E.; Megrelishvili, M., Group actions on treelike compact spaces, Sci China Math, 62, 2447-2462 (2019) · Zbl 1435.37062 · doi:10.1007/s11425-018-9488-9
[15] Hasselblatt, B. and Katok, A., Handbook of Dynamical Systems, Vol. 1, Handbook of Dynamical Systems, Vol. 1B, Elsevier, 2005. · Zbl 1013.00016
[16] Kuratowski, K., Topology, II (1968), Academic Press: Academic Press, New York · Zbl 1444.55001
[17] Malyutin, A.V., On groups acting on dendrons, (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 415 (2013), Geometriya i Topologiya. 12, pp. 62-74 (Translation in J. Math. Sci. (N.Y). 212(5) (2016), pp. 558-565). · Zbl 1355.54044
[18] Margulis, G., Free subgroups of the homeomorphism group of the circle, C.R. Acad. Sci. Paris, 331, 669-674 (2000) · Zbl 0983.37029
[19] Marshall, Jr, H., The theory of groups, Reprinting of the 1968 edition. Chelsea Publishing Co., New York, 1976. · Zbl 0354.20001
[20] Marzougui, H.; Naghmouchi, I., Minimal sets for group actions on dendrites, Proc. Amer. Math. Soc., 144, 4413-4425 (2016) · Zbl 1418.37018
[21] Marzougui, H.; Naghmouchi, I., Minimal sets and orbit spaces for group actions on local dendrites, Math. Z., 293, 3-4, 1057-1070 (2019) · Zbl 1436.37011
[22] Mejía, A. I.; Bernard Nadler Jr, S., Hyperspaces: fundamentals and recent advances, 216 (1999), Marcel Dekker Inc.: Marcel Dekker Inc., New York · Zbl 0933.54009
[23] Monod, N., Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA, 110, 12, 4524-4527 (2013) · Zbl 1305.57002
[24] Nadkarni, M.G., Basic ergodic theory, Hindustan Book Agency, New Delhi 2013 (India), (In Europe, Birkhauser) (1999)). · Zbl 0908.28014
[25] Nadler Jr, S. B., Continuum theory (1992), Marcel Dekker Inc.: Marcel Dekker Inc., New York · Zbl 0757.54009
[26] Naghmouchi, I., Dynamical properties of monotone dendrite maps, Topol. Appl., 159, 1, 144-149 (2012) · Zbl 1242.37011 · doi:10.1016/j.topol.2011.08.020
[27] Navas, A., Groups of Circle Diffeomorphisms, Available at arXiv:math/0607481v3 [math.DS]. · Zbl 1236.37002
[28] Ol’shanskii, A. Y., An infinite simple torsion-free Noetherian group, Izv. Akad. Nauk SSSR Ser. Mat., 43, 6, 1328-1393 (1979) · Zbl 0431.20027
[29] Ol’shanskii, A. Y., An infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat., 44, 2, 309-321 (1980)
[30] Ol’shanskii, A. Y., On the question of the existence of an invariant mean on a group, Uspekhi Mat. Nauk., 35, 4-214, 199-200 (1980) · Zbl 0452.20032
[31] Paterson, A. L.T., Amenability (1988), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0648.43001
[32] Rudin, W., Fonctionnal analysis (1991), McGraw-Hill, Inc.: McGraw-Hill, Inc., New York · Zbl 0867.46001
[33] Shi, E. H., Free subgroups of dendrite homeomorphism group, Top & Appl., 159, 2662-2668 (2012) · Zbl 1255.54017
[34] Shi, E.H. and Ye, X.D., Periodic points for amenable group actions on dendrites, in Proceeding of AMS. · Zbl 1368.37019
[35] Shi, E.H. and Ye, X.D., Equicontinuity of minimal sets for amenable group actions on dendrites, Contem. Math. in the memory of Sergii Kolyada, pp. 175-180, Available at arXiv:1807.01667v1 [math.DS]. · Zbl 1446.37015
[36] van Mill, J. and Wattel, E., Dendrons, Topology and order strzlctwes, Math. Centre Tracts, Vol. 142, Amsterdam, 1981, pp. 59-81. · Zbl 0469.54017
[37] von Neumann, J., Zur allgemeinen theorie des maßes [On the general theory of measure], Fund. Math., 13, 73-116 (1929) · JFM 55.0151.01
[38] Ward, L. E., Recent developments in dendritic spaces and related topics, Stud. Topol., 601-647 (1975) · Zbl 0318.54036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.