×

Caustics of weakly Lagrangian distributions. (English) Zbl 1487.35008

Summary: We study semiclassical sequences of distributions \(u_h\) associated with a Lagrangian submanifold of phase space \(\mathcal{L}\subset T^*X\). If \(u_h\) is a semiclassical Lagrangian distribution, which concentrates at a maximal rate on \(\mathcal{L},\) then the asymptotics of \(u_h\) are well understood by work of Arnol’d, provided \(\mathcal{L}\) projects to \(X\) with a stable simple Lagrangian singularity. We establish sup-norm estimates on \(u_h\) under much more general hypotheses on the rate at which it is concentrating on \(\mathcal{L}\) (again assuming a stable simple projection). These estimates apply to sequences of eigenfunctions of integrable and KAM Hamiltonians.

MSC:

35A08 Fundamental solutions to PDEs
35S05 Pseudodifferential operators as generalizations of partial differential operators
35P05 General topics in linear spectral theory for PDEs
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
53D12 Lagrangian submanifolds; Maslov index

References:

[1] Alexandrova, I., Semi-classical wavefront set and Fourier integral operators, Can. J. Math., 60, 2, 241-263 (2008) · Zbl 1162.35078 · doi:10.4153/CJM-2008-011-7
[2] Arnol’d, V.I.: Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5 (113)), 13-40 (1963) · Zbl 0129.16606
[3] Arnol’d, V.I.: Integrals of rapidly oscillating functions, and singularities of the projections of Lagrangian manifolds. Funkcional. Anal. i Priložen. 6(3), 61-62 (1972) · Zbl 0278.57010
[4] Arnol’d, V.I.: Normal forms of functions in neighbourhoods of degenerate critical points. Russ. Math. Surv. 29(2), 10 (1974) · Zbl 0304.57018
[5] Arnol’d, V.I., Mathematical methods of classical mechanics, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition: Translated from the Russian by K. Vogtmann and A, Weinstein (1989) · Zbl 0692.70003
[6] Bourgain, J.; Rudnick, Z., Restriction of toral eigenfunctions to hypersurfaces, C. R. Math. Acad. Sci. Paris, 347, 21-22, 1249-1253 (2009) · Zbl 1192.58017 · doi:10.1016/j.crma.2009.08.008
[7] Da Vinci, L.: Codex Arundel. MSS British Library, 263:f215
[8] Delos, JB, Catastrophes and stable caustics in bound states of Hamiltonian systems, J. Chem. Phys., 86, 1, 425-439 (1987) · doi:10.1063/1.452581
[9] Duistermaat, JJ, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Commun. Pure Appl. Math., 27, 207-281 (1974) · Zbl 0285.35010 · doi:10.1002/cpa.3160270205
[10] Duke, W., Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92, 1, 73-90 (1988) · Zbl 0628.10029 · doi:10.1007/BF01393993
[11] Galkowski, J.; Toth, JA, Pointwise bounds for joint eigenfunctions of quantum completely integrable systems, Commun. Math. Phys., 375, 2, 915-947 (2020) · Zbl 1441.81101 · doi:10.1007/s00220-020-03730-3
[12] Grigis, A., Sjöstrand, J.: Microlocal analysis for differential operators, volume 196 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge. An introduction (1994) · Zbl 0804.35001
[13] Guillemin, V., Sternberg, S.: Geometric Asymptotics. AMS Surveys, vol. 14. AMS, Providence, R.I. (1977) · Zbl 0364.53011
[14] Hörmander, L., Fourier integral operators. I, Acta Math., 127, 79-183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052
[15] Iwaniec, H., Fourier coefficients of modular forms of half-integral weight, Invent. Math., 87, 2, 385-401 (1987) · Zbl 0606.10017 · doi:10.1007/BF01389423
[16] Kolmogorov, A.N.: On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.), 98, 527-530 (1954) · Zbl 0056.31502
[17] Montaldi, J.: Caustics in time reversible Hamiltonian systems. In: Singularity theory and its applications, Part II (Coventry, 1988/1989), volume 1463 of Lecture Notes in Math., pp. 266-277. Springer, Berlin, (1991) · Zbl 0739.58022
[18] Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962:1-20 (1962) · Zbl 0107.29301
[19] Sardari, NT, Optimal strong approximation for quadratic forms, Duke Math. J., 168, 10, 1887-1927 (2019) · Zbl 1443.11030 · doi:10.1215/00127094-2019-0007
[20] Stuchi, TJ; Vieira Martins, R., Caustics of Hamiltonian systems: an alternative to the surface of section method, Phys. Lett. A, 201, 2-3, 179-185 (1995) · Zbl 1020.70503 · doi:10.1016/0375-9601(95)00202-E
[21] Zworski, M.: Semiclassical analysis, volume 138. American Mathematical Soc. (2012) · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.