×

An adaptive modal discontinuous Galerkin finite element parallel method using unsplit multi-axial perfectly matched layer for seismic wave modeling. (English) Zbl 1486.86001

Summary: The discontinuous Galerkin finite element method (DG-FEM) is a high-precision numerical simulation method widely used in various disciplines. In this paper, we derive the auxiliary ordinary differential equation complex frequency-shifted multi-axial perfectly matched layer (AODE CFS-MPML) in an unsplit format and combine it with any high-order adaptive DG-FEM based on an unstructured mesh to simulate seismic wave propagation. To improve the computational efficiency, we implement Message Passing Interface (MPI) parallelization for the simulation. Comparisons of the numerical simulation results with the analytical solutions verify the accuracy and effectiveness of our method. The results of numerical experiments also confirm the stability and effectiveness of the AODE CFS-MPML.

MSC:

86-08 Computational methods for problems pertaining to geophysics
86A15 Seismology (including tsunami modeling), earthquakes
74S05 Finite element methods applied to problems in solid mechanics

Software:

METIS; RegSEM
Full Text: DOI

References:

[1] Z. Alterman and F. Karal Jr., Propagation of elastic waves in layered media by finite difference methods, Bulletin of the Seismological Society of America, vol. 58, no. 1, pp. 367-398, 1968.
[2] J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, vol. 51, no. 4, pp. 889-901, 1986.
[3] P. Moczo, J. O. Robertsson, and L. Eisner, The finite-difference time-domain method for modeling of seismic wave propagation, Advances in Geophysics, vol. 48, pp. 421-516, 2007.
[4] T. Bohlen, Parallel 3-D viscoelastic finite difference seismic modelling, Computers & Geo-sciences, vol. 28, no. 8, pp. 887-899, 2002.
[5] W. Zhang and X. Chen, Traction image method for irregular free surface boundaries in finite difference seismic wave simulation, Geophysical Journal International, vol. 167, no. 1, pp. 337-353, 2006.
[6] W. Zhang, Z. Zhang, and X. Chen, Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids, Geophysical Journal International, vol. 190, no. 1, pp. 358-378, 2012.
[7] E. Tessmer and D. Kosloff, 3-D elastic modeling with surface topography by a Chebychev spectral method, Geophysics, vol. 59, no. 3, pp. 464-473, 1994.
[8] T. Furumura, B. Kennett, and M. Furumura, Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method, Geophysical Journal International, vol. 135, no. 3, pp. 845-860, 1998.
[9] J. Lysmer and L. A. Drake, A finite element method for seismology, Methods in Computa-tional Physics, vol. 11, pp. 181-216, 1972.
[10] W. D. Smith, The application of finite element analysis to body wave propagation problems, Geophysical Journal International, vol. 42, no. 2, pp. 747-768, 1975.
[11] K. J. Marfurt, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations, Geophysics, vol. 49, no. 5, pp. 533-549, 1984.
[12] Y. Ding-hui, Finite element method of the elastic wave equation and wavefield simulation in two-phase anisotropic media, Chinese Journal of Geophysics, vol. 4, 2002.
[13] G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heteroge-neous media, Finite Elements in Analysis and Design, vol. 16, no. 3-4, pp. 337-348, 1994. · Zbl 0810.73079
[14] D. Komatitsch, Méthodes spectrales etéléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogène. PhD thesis, Institut de physique du globe de paris-IPGP, 1997.
[15] D. Komatitsch and J. Tromp, Spectral-element simulations of global seismic wave propagation-I. Validation, Geophysical Journal International, vol. 149, no. 2, pp. 390-412, 2002.
[16] D. Komatitsch and J. Tromp, Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation, Geo-physical Journal International, vol. 150, no. 1, pp. 303-318, 2002.
[17] M. Gurnis, L. Kellogg, J. Bloxham, B. Hager, M. Spiegelman, S. Willett, M. Wysession, and M. Aivazis, Computational infrastructure for geodynamics (CIG), in AGU Fall Meeting Abstracts, vol. 2004, pp. SF31B-04, 2004.
[18] A. Fichtner, B. L. Kennett, H. Igel, and H.-P. Bunge, Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods, Geophysical Journal International, vol. 179, no. 3, pp. 1703-1725, 2009.
[19] P. Cupillard, E. Delavaud, G. Burgos, G. Festa, J.-P. Vilotte, Y. Capdeville, and J.-P. Montagner, RegSEM: A versatile code based on the spectral element method to compute seismic wave propagation at the regional scale, Geophysical Journal International, vol. 188, no. 3, pp. 1203-1220, 2012.
[20] E. Dormy and A. Tarantola, Numerical simulation of elastic wave propagation using a finite volume method, Journal of Geophysical Research: Solid Earth, vol. 100, no. B2, pp. 2123-2133, 1995.
[21] R. J. LeVeque et al., Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, 2002. · Zbl 1010.65040
[22] M. Dumbser, M. Käser, and J. De La Puente, Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D, Geophysical Journal International, vol. 171, no. 2, pp. 665-694, 2007.
[23] W. H. Reed and T. Hill, Triangular mesh methods for the neutron transport equation, tech. rep., Los Alamos Scientific Lab., N. Mex.(USA), 1973.
[24] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Mathematics of Computation, vol. 52, no. 186, pp. 411-435, 1989. · Zbl 0662.65083
[25] B. Cockburn, S.-Y. Lin, and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, Journal of Computational Physics, vol. 84, no. 1, pp. 90-113, 1989. · Zbl 0677.65093
[26] B. Cockburn, S. Hou, and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math-ematics of Computation, vol. 54, no. 190, pp. 545-581, 1990. · Zbl 0695.65066
[27] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conserva-tion laws V: Multidimensional systems, Journal of Computational Physics, vol. 141, no. 2, pp. 199-224, 1998. · Zbl 0920.65059
[28] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: Algorithms, analysis, and applications. Springer Science & Business Media, 2007.
[29] M. Käser and M. Dumbser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-I. The two-dimensional isotropic case with external source terms, Geophysical Journal International, vol. 166, no. 2, pp. 855-877, 2006.
[30] M. Käser, M. Dumbser, J. De La Puente, and H. Igel, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-III. Viscoelastic attenuation, Geophysical Journal International, vol. 168, no. 1, pp. 224-242, 2007.
[31] J. de la Puente, M. Käser, M. Dumbser, and H. Igel, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-IV. Anisotropy, Geophysical Journal International, vol. 169, no. 3, pp. 1210-1228, 2007.
[32] X. He, D. Yang, and H. Wu, A weighted Runge-Kutta discontinuous Galerkin method for wavefield modelling, Geophysical Journal International, vol. 200, no. 3, pp. 1389-1410, 2015.
[33] S. Delcourte, L. Fezoui, and N. Glinsky-Olivier, A high-order discontinuous Galerkin method for the seismic wave propagation, in ESAIM: Proceedings, vol. 27, pp. 70-89, EDP Sciences, 2009. · Zbl 1167.86305
[34] V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky, An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, Geophysical Journal International, vol. 183, no. 2, pp. 941-962, 2010.
[35] L. Lambrecht, A. Lamert, W. Friederich, T. Möller, and M. S. Boxberg, A nodal discontinu-ous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media, Geophysical Journal International, vol. 212, no. 3, pp. 1570-1587, 2018.
[36] Q. Zhan, Q. Sun, Q. Ren, Y. Fang, H. Wang, and Q. H. Liu, A discontinuous Galerkin method for simulating the effects of arbitrary discrete fractures on elastic wave propagation, Geophysical Journal International, vol. 210, no. 2, pp. 1219-1230, 2017.
[37] C. Jiang, J. Cui, and Y. Wang, A conformal energy-conserved method for Maxwell’s equations with perfectly matched layers, Communications in Computational Physics, vol. 25, no. 1, pp. 84-106, 2019. · Zbl 1473.65236
[38] Y. Chen, P. Li, and X. Yuan, An adaptive finite element PML method for the open cavity scattering problems, arXiv preprint arXiv:2006.13751, 2020.
[39] X. Li, N. Feng, and Y. Zhang, Well-organized MZT-ME-PML approach for THz BP metasur-face implementations, Commun. Comput. Phys., vol. 29, no. 2, pp. 588-605, 2021. · Zbl 1473.78015
[40] J. Tago, L. Métivier, and J. Virieux, Smart layers: A simple and robust alternative to PML approaches for elastodynamics, Geophysical Journal International, no. 2, pp. 700-706, 2014.
[41] W. Zhang and Y. Shen, Unsplit complex frequency-shifted PML implementation using aux-iliary differential equations for seismic wave modeling, Geophysics, vol. 75, no. 4, pp. T141-T154, 2010.
[42] Z. Zhang, W. Zhang, and X. Chen, Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modelling on curvilinear grids, Geophysical Journal International, vol. 198, no. 1, pp. 140-153, 2014.
[43] X. Zhao, X. Li, L. Dong, and Q. Zhao, A new perfectly matched layer (CFS-NPML) in elastic wave modeling with discontinuous Galerkin finite-element method, in Seg Technical Program Expanded, 2013.
[44] Q. Zhan, R. Qiang, Q. Sun, and Q. H. Liu, Discontinuous Galerkin pseudospectral time do-main algorithm (DG-PSTD) with auxiliary ordinary differential equations perfectly matched layer (AODE-PML) for 3D seismic modelling, in Seg Technical Program Expanded, 2015.
[45] K. Aki and P. G. Richards, Quantitative Seismology. 2002.
[46] A. Bedford and D. Drumheller, Elastic Wave Propagation, John Wiley & Sons, pp. 151-165, 1994.
[47] M. Dubiner, Spectral methods on triangles and other domains, Journal of Scientific Com-puting, vol. 6, no. 4, pp. 345-390, 1991. · Zbl 0742.76059
[48] J. Qiu, B. C. Khoo, and C.-W. Shu, A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes, Journal of Computa-tional Physics, vol. 212, no. 2, pp. 540-565, 2006. · Zbl 1083.65093
[49] X. He, D. Yang, and C. Qiu, Dispersion-dissipation analysis of triangular numerical-flux-based discontinuous Galerkin method for elastic wave equations, Journal of Computational Physics, vol. 418, p. 109630, 2020. · Zbl 07506181
[50] W. C. Chew and Q. Liu, Perfectly matched layers for elastodynamics: A new absorbing boundary condition, Journal of Computational Acoustics, vol. 4, no. 04, pp. 341-359, 1996.
[51] K. C. Meza-Fajardo and A. S. Papageorgiou, A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis, Bulletin of the Seismological Society of America, vol. 98, no. 4, pp. 1811-1836, 2008.
[52] R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM Journal on Numerical Analysis, vol. 40, no. 2, pp. 469-491, 2002. · Zbl 1020.65064
[53] G. Karypis and V. Kumar, METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, 1997.
[54] L. Küperkoch, T. Meier, J. Lee, W. Friederich, and E. W. Group, Automated determination of p-phase arrival times at regional and local distances using higher order statistics, Geophysical Journal International, vol. 181, no. 2, pp. 1159-1170, 2010.
[55] X. Chen, A systematic and efficient method of computing normal modes for multilayered half-space, Geophysical Journal International, vol. 115, no. 2, pp. 391-409, 1993.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.