×

Monodromy of rational curves on \(K3\) surfaces of low genus. (English) Zbl 1485.14020

Summary: In many situations, the monodromy group of enumerative problems will be the full symmetric group. In this paper, we study a similar phenomenon on the rational curves in \(| \mathcal{O}(1) |\) on a generic \(K3\) surface of fixed genus over \(\mathbb{C}\) as the \(K3\) surface varies. We prove that when the \(K3\) surface has genus \(g\), \(1 \leq g \leq 3\), the monodromy group is the full symmetric group.

MSC:

14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14J20 Arithmetic ground fields for surfaces or higher-dimensional varieties
14J28 \(K3\) surfaces and Enriques surfaces
14N10 Enumerative problems (combinatorial problems) in algebraic geometry

References:

[1] Beauville, A., Counting rational curves on K3 surfaces, Duke Math. J., 97, 99-108 (1999) · Zbl 0999.14018
[2] Buekenhout, F.; Leemans, D., On the list of finite primitive permutation groups of degree ≤ 50, J. Symb. Comput., 22, 215-225 (1996) · Zbl 0870.20003
[3] Cifani, M. G.; Cuzzucoli, A.; Moschetti, R., Monodromy of projections of hypersurfaces, Ann. Mat. (2021)
[4] Ciliberto, C.; Dedieu, T., On universal Severi varieties of low genus K3 surfaces, Math. Z., 271, 3-4, 953-960 (2012) · Zbl 1252.14033
[5] Ciliberto, C.; Dedieu, T., Limits of pluri-tangent planes to quartic surfaces, (Algebraic and Complex Geometry. Algebraic and Complex Geometry, Springer Proc. Math. Stat., vol. 71 (2014), Springer: Springer Cham), 123-199 · Zbl 1312.14091
[6] Dedieu, T., Severi varieties and self-rational maps of K3 surfaces, Int. J. Math., 20, 12, 1455-1477 (2009) · Zbl 1190.14033
[7] Esterov, A., Galois theory for general systems of polynomial equations, Compos. Math., 155, 2, 229-245 (2019) · Zbl 1451.14152
[8] Greuel, G.-M.; Lossen, C.; Shustin, E., Introduction to Singularities and Deformations, Springer Monographs in Mathematics (2007), Springer: Springer Berlin · Zbl 1125.32013
[9] Greuel, G-M.; Lossen, C.; Shustin, E., Singular Algebraic Curves. With an Appendix by Oleg Viro, Springer Monographs in Mathematics (2018), Springer: Springer Cham · Zbl 1411.14001
[10] Harris, J., Galois groups of enumerative problems, Duke Math. J., 4, 685-724 (1979) · Zbl 0433.14040
[11] Huybrechts, D., Lectures on K3 Surfaces, Cambridge Studies in Advanced Mathematics, vol. 158 (2016), Cambridge University Press · Zbl 1360.14099
[12] Hashimoto, S.; Kadets, B., 38406501359372282063949 and all that: monodromy of Fano problems, Int. Math. Res. Not. (2020) · Zbl 1482.14054
[13] Kas, A., Weierstrass normal forms and invariants of elliptic surfaces, Trans. Am. Math. Soc., 225, 259-266 (1977) · Zbl 0402.14014
[14] Kemeny, M., The universal Severi variety of rational curves on K3 surfaces, Bull. Lond. Math. Soc., 45, 159-174 (2013) · Zbl 1268.14039
[15] Kleiman, S., The enumerative theory of singularities, (Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math.). Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math.), Oslo, 1976 (1977), Sijthoff and Noordhoff: Sijthoff and Noordhoff Alphen aan den Rijn), 297-396 · Zbl 0385.14018
[16] Miranda, R., The moduli of Weierstrass fibrations over \(\mathbb{P}^1\), Math. Ann., 255, 379-394 (1981) · Zbl 0438.14023
[17] McCrory, C.; Shifrin, T., Cusps of the projective Gauss map, J. Differ. Geom., 19, 257-276 (1984) · Zbl 0523.53010
[18] Piene, R., Some formulas for a surface in \(\mathbb{P}^3\), (Algebraic Geometry (Proc. Sympos.). Algebraic Geometry (Proc. Sympos.), Univ. Tromsø, Tromsø, 1977. Algebraic Geometry (Proc. Sympos.). Algebraic Geometry (Proc. Sympos.), Univ. Tromsø, Tromsø, 1977, Lecture Notes in Math., vol. 687 (1978)), 196-235 · Zbl 0391.14008
[19] Pirola, G.; Schlesinger, E., Monodromy of projective curves, J. Algebraic Geom., 14, 4, 623-642 (2005) · Zbl 1084.14011
[20] Ruffo, J.; Sivan, Y.; Soprunova, E.; Sottile, F., Experimentation and conjectures in the real Schubert calculus for flag manifolds, Exp. Math., 15, 2, 199-221 (2006) · Zbl 1111.14049
[21] Sottile, F.; Yahl, T., Galois groups in enumerative geometry and applications
[22] Vakil, R., Schubert induction, Ann. Math. (2), 164, 2, 489-512 (2006) · Zbl 1115.14043
[23] Witaszek, J., The geometry of smooth quartics
[24] Yau, S. T.; Zaslow, E., BPS states, string duality, and nodal curves on K3, Nucl. Phys. B, 471, 3, 503-512 (1996) · Zbl 0964.81521
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.