×

Approximate solution of nonlinear Black-Scholes equation via a fully discretized fourth-order method. (English) Zbl 1484.91517

Summary: In this work, a new fourth-order finite difference (FD) approximation (for both structured and unstructured grid of nodes) is contributed and equipped with the fourth-order Runge-Kutta scheme to tackle the financial nonlinear partial differential equation (PDE) of Black-Scholes. This timedependent PDE problem is converted to a set of ordinary differential equations (ODEs). It is proved that under several criteria the procedure is time stable. Computational illustrations presented here, show that our approach is fast and accurate. The proposed technique reduces the computational cost, when more accurate results are requested.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
91G20 Derivative securities (option pricing, hedging, etc.)

References:

[1] Y. Adam, i>Highly accurate compact implicit methods and boundary conditions</i, J. Comput. Phys., 24, 10-22 (1977) · Zbl 0357.65074 · doi:10.1016/0021-9991(77)90106-1
[2] A. Akgül; F. Soleymani, i>How to construct a fourth-order scheme for Heston-Hull-White</i> <i>equation?</i, AIP Conference Proceedings, 2116 (2019)
[3] Z. Al-Zhour; M. Barfeie; F. Soleymani, t al. <i>A computational method to price with transaction</i> <i>costs under the nonlinear Black-Scholes model</i, Chaos Soliton. Fract., 127, 291-301 (2019) · Zbl 1448.91322 · doi:10.1016/j.chaos.2019.06.033
[4] J. Ankudinova; M. Ehrhardt, i>On the numerical solution of nonlinear Black-Scholes equations</i, Comput. Math. Appl., 56, 799-812 (2008) · Zbl 1155.65367 · doi:10.1016/j.camwa.2008.02.005
[5] A. Babucke, M. J. Kloker, <i>Accuracy analysis of the fundamental finite-difference methods on</i> <i>non-uniform grids</i>, Internal report, Stuttgart University, 2009.
[6] L. V. Ballestra; C. Sgarra, i>The evaluation of American options in a stochastic volatility model</i> <i>with jumps: An efficient finite element approach</i, Comput. Math. Appl., 60, 1571-1590 (2010) · Zbl 1202.91313 · doi:10.1016/j.camwa.2010.06.040
[7] G. Barles; H. M. Soner, i>Option pricing with transaction costs and a nonlinear Black-Scholes</i> <i>equation</i, Financ. Stoch., 2, 369-397 (1998) · Zbl 0915.35051 · doi:10.1007/s007800050046
[8] F. Black; M. Scholes, i>The pricing of options and corporate liabilities</i, J. Polit. Econ., 81, 637-654 (1973) · Zbl 1092.91524 · doi:10.1086/260062
[9] R. Company; L. Jódar; J. R. Pintos, i>A numerical method for European option pricing with</i> <i>transaction costs nonlinear equation</i, Math. Comput. Model., 50, 910-920 (2009) · Zbl 1185.91174 · doi:10.1016/j.mcm.2009.05.019
[10] M. Cummins, F. Murphy, J. J. H. Miller, <i>Topics in Numerical Methods for Finance</i>, Springer, New York, 2012.
[11] B. Düring; M. Fournié; A. Jüngel, i>High order compact finite difference schemes for a nonlinear</i> <i>Black-Scholes equation</i, Int. J. Theor. Appl. Financ., 6, 767-789 (2003) · Zbl 1070.91024 · doi:10.1142/S0219024903002183
[12] B. Fornberg, <i>A Practical Guide to Pseudospectral Methods</i>, Cambridge University Press, UK, 1996. · Zbl 0844.65084
[13] E. Hairer, G. Wanner, <i>Solving Ordinary Differential Equations II</i>, Springer-Verlag, Berlin Heidelberg, 1996. · Zbl 0859.65067
[14] D. J. Higham, <i>An Introduction to Financial Option Valuation</i>, Cambridge University Press, UK, 2004. · Zbl 1122.91001
[15] M. Jandačka; D. Ševčovič, i>On the risk adjusted pricing methodology based valuation of vanilla</i> <i>options and explanation of the volatility smile</i, J. Appl. Math., 2005, 235-258 (2005) · Zbl 1128.91025 · doi:10.1155/JAM.2005.235
[16] M. K. Kadalbajoo; A. Kumar; L. P. Tripathi, i>An efficient numerical method for pricing option</i> <i>under jump diffusion model</i, Int. J. Adv. Eng. Sci. Appl. Math., 7, 114-123 (2015) · Zbl 1342.91042 · doi:10.1007/s12572-015-0136-z
[17] R. Knapp, i>A method of lines framework in mathematica</i, J. Numer. Anal. Indust. Appl. Math., 3, 43-59 (2008) · Zbl 1154.65070
[18] N. Krejić; M. Kumaresan; A. Rožnjik, i>VaR optimal portfolio with transaction costs</i, Appl. Math. Comput., 218, 4626-4637 (2011) · Zbl 1239.91150
[19] G. H. Meyer, <i>The Time-Discrete Method of Lines for Options and
[20] S. Milovanović; L. von Sydow, i>Radial basis function generated finite differences for option</i> <i>pricing problems</i, Comput. Math. Appl., 75, 1462-1481 (2018) · Zbl 1409.91279 · doi:10.1016/j.camwa.2017.11.015
[21] R. Mohammadi, i>Quintic B-spline collocation approach for solving generalized Black-Scholes</i> <i>equation governing option pricing</i, Comput. Math. Appl., 69, 777-797 (2015) · Zbl 1443.65249 · doi:10.1016/j.camwa.2015.02.018
[22] M. Monoyios, i>Option pricing with transaction costs using a Markov chain approximation</i, J. Econ. Dyn. Control, 28, 889-913 (2004) · Zbl 1179.91244 · doi:10.1016/S0165-1889(03)00059-9
[23] A. Parás; M. Avellaneda, i>Dynamic hedging portfolios for derivative securities in the presence of</i> <i>large transaction costs</i, Appl. Math. Financ., 1, 165-193 (1994) · Zbl 1466.91349 · doi:10.1080/13504869400000010
[24] P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., (2020) · Zbl 1437.91455
[25] P. Roul; V. M. K. P. Goura, i>A new higher order compact finite difference method for generalised</i> <i>Black-Scholes partial differential equation: European call option</i, J. Comput. Appl. Math., 363, 464-484 (2020) · Zbl 1418.91602 · doi:10.1016/j.cam.2019.06.015
[26] T. Sauer, <i>Numerical Analysis</i>, 2 Eds., Pearson Publication, USA, 2012.
[27] D. Ševčovič; M. Žitnanská, i>Analysis of the nonlinear option pricing model under variable</i> <i>transaction costs</i, Asia-Pac. Financ. Mark., 23, 153-174 (2016) · Zbl 1418.91538 · doi:10.1007/s10690-016-9213-y
[28] R. U. Seydel, <i>Tools for Computational Finance</i>, 6 Eds, Springer, United Kingdom, 2017. · Zbl 1369.91002
[29] A. R. Soheili; F. Soleymani, i>Construction of some accelerated methods for solving scalar</i> <i>stochastic differential equations</i, Int. J. Comput. Sci. Math., 7, 537-547 (2016) · Zbl 1453.65023 · doi:10.1504/IJCSM.2016.081680
[30] A. R. Soheili; F. Soleymani, i>A new solution method for stochastic differential equations via</i> <i>collocation approach</i, Int. J. Comput. Math., 93, 2079-2091 (2016) · Zbl 1355.65017 · doi:10.1080/00207160.2015.1085029
[31] M. Sofroniou, R. Knapp, <i>Advanced Numerical Differential Equation Solving in Mathematica</i>, Wolfram Mathematica, Tutorial Collection, USA, 2008.
[32] F. Soleymani, i>Pricing multi-asset option problems: A Chebyshev pseudo-spectral method</i, BIT, 59, 243-270 (2019) · Zbl 1419.91654 · doi:10.1007/s10543-018-0722-0
[33] F. Soleymani; A. Akgül, i>Improved numerical solution of multi-asset option pricing problem: A</i> <i>localized RBF-FD approach</i, Chaos Soliton. Fract., 119, 298-309 (2019) · Zbl 1448.91311 · doi:10.1016/j.chaos.2019.01.003
[34] D. Tavella, C. Randall, <i>Pricing Financial Instruments - The Finite Difference Method</i>, John Wiley & Sons Inc., New York, 2000.
[35] M. Trott, <i>The Mathematica GuideBook for Numerics</i>, Springer, NY, USA, 2006. · Zbl 1101.65001
[36] P. Ursone, <i>How to Calculate Options Prices and their Greeks</i>, Wiely, UK, 2015.
[37] P. R. Wellin, R. J. Gaylord, S. N. Kamin, <i>An Introduction to Programming with Mathematica</i>, Cambridge University Press, UK, 2005. · Zbl 1058.68033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.