×

Convergence rates of large-time sensitivities with the Hansen-Scheinkman decomposition. (English) Zbl 1484.91487

Summary: This paper investigates the large-time asymptotic behavior of the sensitivities of cash flows. In quantitative finance, the price of a cash flow is expressed in terms of a pricing operator of a Markov diffusion process. We study the extent to which the pricing operator is affected by small changes of the underlying Markov diffusion. The main idea is a partial differential equation (PDE) representation of the pricing operator by incorporating the Hansen-Scheinkman decomposition method. The sensitivities of the cash flows and their large-time convergence rates can be represented via simple expressions in terms of eigenvalues and eigenfunctions of the pricing operator. Furthermore, compared to our work [Finance Stoch. 22, No. 4, 773–825 (2018; Zbl 1416.91382)], more detailed convergence rates are provided. In addition, we discuss the application of our results to three practical problems: utility maximization, entropic risk measures, and bond prices. Finally, as examples, explicit results for several market models such as the Cox-Ingersoll-Ross (CIR) model, 3/2 model and constant elasticity of variance (CEV) model are presented.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences

Citations:

Zbl 1416.91382

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol 55. Courier Corporation (1965) · Zbl 0171.38503
[2] Delbaen, F.; Schachermayer, W., A general version of the fundamental theorem of asset pricing, Math. Ann., 300, 1, 463-520 (1994) · Zbl 0865.90014 · doi:10.1007/BF01450498
[3] Dereich, S.; Neuenkirch, A.; Szpruch, L., An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proc. R. Soc. A Math. Phys. Eng. Sci., 468, 2140, 1105-1115 (2011) · Zbl 1364.65013
[4] Fleming, WH; McEneaney, WM, Risk-sensitive control on an infinite time horizon, SIAM J. Control Optim., 33, 6, 1881-1915 (1995) · Zbl 0949.93079 · doi:10.1137/S0363012993258720
[5] Fournié, E.; Lasry, JM; Lebuchoux, J.; Lions, PL; Touzi, N., Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch., 3, 4, 391-412 (1999) · Zbl 0947.60066 · doi:10.1007/s007800050068
[6] Friedman, A., Partial Differential Equations of Parabolic Type (2008), New York: Courier Dover Publications, New York
[7] Gobet, E.; Munos, R., Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control, SIAM J. Control Optim., 43, 5, 1676-1713 (2005) · Zbl 1116.60033 · doi:10.1137/S0363012902419059
[8] Hansen, LP, Dynamic valuation decomposition within stochastic economies, Econometrica, 80, 3, 911-967 (2012) · Zbl 1274.91309 · doi:10.3982/ECTA8070
[9] Hansen, LP; Scheinkman, J., Long-term risk: an operator approach, Econometrica, 77, 1, 177-234 (2009) · Zbl 1160.91367 · doi:10.3982/ECTA6761
[10] Hansen, LP; Scheinkman, J., Pricing growth-rate risk, Finance Stoch., 16, 1, 1-15 (2012) · Zbl 1262.91069 · doi:10.1007/s00780-010-0141-9
[11] Heath, D.; Schweizer, M., Martingales versus PDEs in finance: an equivalence result with examples, J. Appl. Probab., 37, 4, 947-957 (2000) · Zbl 0996.91069 · doi:10.1239/jap/1014843075
[12] Hurd, TR; Kuznetsov, A., Explicit formulas for Laplace transforms of stochastic integrals, Markov Process. Relat. Fields, 14, 2, 277-290 (2008) · Zbl 1149.60021
[13] Jeanblanc, M.; Yor, M.; Chesney, M., Mathematical Methods for Financial Markets (2009), Berlin: Springer, Berlin · Zbl 1205.91003 · doi:10.1007/978-1-84628-737-4
[14] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus (1991), Berlin: Springer, Berlin · Zbl 0734.60060
[15] Kramkov, D.; Schachermayer, W., The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Ann. Appl. Probab., 9, 3, 904-950 (1999) · Zbl 0967.91017 · doi:10.1214/aoap/1029962818
[16] Kramkov, D.; Sîrbu, M., Sensitivity analysis of utility-based prices and risk-tolerance wealth processes, Ann. Appl. Probab., 16, 4, 2140-2194 (2006) · Zbl 1132.91426 · doi:10.1214/105051606000000529
[17] Leung, T.; Park, H., Long-term growth rate of expected utility for leveraged ETFs: Martingale extraction approach, Int. J. Theor. Appl. Finance, 20, 6, 1750037 (2017) · Zbl 1396.91747 · doi:10.1142/S0219024917500376
[18] Liu, R., Muhle-Karbe, J.: Portfolio choice with stochastic investment opportunities: a user’s guide (2013). arXiv preprint arXiv:1311.1715 · Zbl 1275.91122
[19] Mostovyi, O.: Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire (2018). arXiv preprint arXiv:1805.11427 · Zbl 1443.91276
[20] Mostovyi, O., Sîrbu, M.: Sensitivity analysis of the utility maximization problem with respect to model perturbations (2017). arXiv preprint arXiv:1705.08291 · Zbl 1465.91100
[21] Park, H., Sensitivity analysis of long-term cash flows, Finance Stoch., 22, 4, 773-825 (2018) · Zbl 1416.91382 · doi:10.1007/s00780-018-0370-x
[22] Park, H.: Convergence rates of large-time sensitivities with the Hansen-Scheinkman decomposition (2019). arXiv preprint arXiv:1912.03404
[23] Park, H., Sturm, S.: A sensitivity analysis of the long-term expected utility of optimal portfolios. Available at SSRN 3401532 (2019)
[24] Pinsky, RG, Positive Harmonic Functions and Diffusion (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0858.31001 · doi:10.1017/CBO9780511526244
[25] Qin, L.; Linetsky, V., Positive eigenfunctions of Markovian pricing operators: Hansen-Scheinkman factorization, Ross recovery, and long-term pricing, Oper. Res., 64, 1, 99-117 (2016) · Zbl 1338.90447 · doi:10.1287/opre.2015.1449
[26] Robertson, S.; Xing, H., Large time behavior of solutions to semilinear equations with quadratic growth in the gradient, SIAM J. Control Optim., 53, 1, 185-212 (2015) · Zbl 1347.60089 · doi:10.1137/13094311X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.