×

An investigation on Michaelis-Menten kinetics based complex dynamics of tumor-immune interaction. (English) Zbl 1483.92074

Summary: We investigate the dynamics of a three-dimensional tumor-immune interactions system. Local dynamics of the system has studied by the finding stability and Hopf bifurcation at biologically feasible equilibria. Further, chaotic phenomena have been investigated by measuring the asymptotic growth of the corresponding phase space trajectory with the various bifurcating parameters of the system. A dynamics of mean fluctuations of the tumor growth based on its local maxima have investigated under the same parameters. A significant correlation between the fluctuations and the tumor dynamics have verified by statistical analysis.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D05 Asymptotic properties of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Zhang, H.; Chen, J., Current status and future directions of cancer immunotherapy, J Cancer, 9, 10, 1773-1781 (2018)
[2] Weinberg, R., The biology of cancer, second ed (2013), Garland Science, London
[3] Wilkie, K. P.; Hahnfeldt, P., Tumor-immune dynamics regulated in the microenvironment inform the transient nature of immune-induced tumor dormancy, Cancer Res, 73, 12, 3534-3544 (2013)
[4] Albini, A.; Tosetti, F.; Benelli, R.; Noonan, D. M., Tumor inflammatory angiogenesis and its chemoprevention, Cancer Res, 65, 23, 10637-10641 (2005)
[5] den Breems, N. Y.; Eftimie, R., The re-polarisation of m2 and m1 macrophages and its role on cancer outcomes, J Theor Biol, 390, 23-39 (2016) · Zbl 1343.92254
[6] Wilkie, K. P.; Hahnfeldt, P., Modelling the dichotomy of the immune response to cancer: cytotoxic effects and tumor-promoting inflammation, Bull Math Biol, 79, 1426-1448 (2017) · Zbl 1372.92047
[7] Rakoff-Nahoum, S., Why cancer and inflammation?, Yale J Biol Med, 79, 123-130 (2006)
[8] Takayanagi, T.; Kawamura, H.; Ohuchi, A., Cellular automaton model of a tumor tissue consisting of tumor cells, cytotoxic t lymphocytes (ctls), and cytokine produced by ctls, IPSJ Digital Courier, 2, 138-144 (2006)
[9] Arabameri, A.; Asemani, D.; Hadjati, J., A structural methodology for modeling immune-tumor interactions including pro-and anti-tumor factors for clinical applications, Math Biosci, 304, 48-61 (2018) · Zbl 1409.92111
[10] 883-90.
[11] Shariatpanahi, S. P.; Shariatpanahi, S. P.; Madjidzadeh, K.; Hassan, M.; Abedi-Valugerdi, M., Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: implications for therapeutic targeting strategies, J Theor Biol, 442, 1-10 (2018) · Zbl 1397.92364
[12] Adam, J.; Bellomo, N., A survey of models for tumor immune dynamics (1997), Birkhauser, Boston · Zbl 0874.92020
[13] Kuznetsov, V. A.; Makalkin, I. A.; Taylor, M. A.; Perelson, A. S., Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull Math Biol, 56, 2, 295-321 (1994) · Zbl 0789.92019
[14] Kirschner, D.; Denise, J. C., Modeling immunotherapy of the tumor immune interaction, J Math Biol, 37, 3, 235-252 (1998) · Zbl 0902.92012
[15] Pillis, L. D.; Radunskaya, A. E., The dynamics of an optimally controlled tumor model: a case study, Math Comput Model, 37, 11, 1221-1244 (2003) · Zbl 1043.92018
[16] Pillis, L. D.; Gu, W.; Fister, K. R.; Head, T.; Maples, K.; Murugan, A., Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls, Math Biosci, 209, 1, 292-315 (2007) · Zbl 1122.49020
[17] Itik, M.; Banks, S., Choas in a three-dimensional cancer model, J Theor Biol, 20, 71-79 (2010) · Zbl 1183.34064
[18] Letellier, C.; Denis, F.; Aguirre, L. A., What can be learned from a chaotic cancer model?, J Theor Biol, 322, 7-16 (2013) · Zbl 1406.92313
[19] Abernethy, S.; Gooding, R. J., The importance of chaotic attractors in modelling tumour growth, Physica A, 507, C, 268-277 (2018) · Zbl 1514.92038
[20] He, S.; Fataf, N.; Banerjee, S.; Sun, K., Complexity in the muscular blood vessel model with variable fractional derivative and external disturbances, Physica A, 526, 120904 (2019) · Zbl 1529.92014
[21] Ott, E., Chaos in dynamical systems (2002), Cambridge: Cambridge University Press · Zbl 1006.37001
[22] Glass, L.; Mackey, M. C., From clocks to chaos: the rhythms of life (1988), Princeton University Press · Zbl 0705.92004
[23] Kalpan, D.; Glass, L., Understanding nonlinear dynamics (2012), Springer
[24] Das, P.; Das, P.; Kundu, A., Delayed feedback controller based finite time synchronization of discontinuous neural networks with mixed time-varying delays, Neural Process Lett, 49, 2, 693-709 (2019)
[25] Strogatz, S. H., Nonlinear dynamics and chaos (1994), Boulder, CO :Westview Press, a member of the Perseus Books Group
[26] Mukherjee, S.; Palit, S. K.; Banerjee, S.; Wahab, A.; Ariffin, M.; Bhattacharya, D. K., Computing two dimensional poincare’ maps for hyperchaotic dynamics, Appl Math Comput, 301, 140-154 (2017) · Zbl 1411.37036
[27] Banerjee, M.; Banerjee, S., Turing instabilities and spatio-temporal chaos in ratio-dependent hollingâtanner model, Math Biosci, 236, 1, 64-76 (2012) · Zbl 1375.92077
[28] Muthuswamy, B.; Banerjee, S., Bifurcations (2015), Springer International Publishing
[29] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining lyapunov exponents from a time series, Physica D, 16, 3, 285-317 (1985) · Zbl 0585.58037
[30] Abarbanel, H.; Brown, R.; Kennel, M., Local lyapunov exponents computed from observed data, J Nonlinear Sci, 2, 3, 343-365 (1992) · Zbl 0802.58041
[31] Saha, P.; Banerjee, S.; Chowdhury, A. R., Bifurcation and chaos in a system simulating magnetic field configurations, Chaos Soliton Fract, 12, 12, 2247-2258 (2001) · Zbl 1246.70020
[32] Gottwald, G. A.; Melbourne, I., A new test for chaos in deterministic systems, Proc R Soc Lond A, 460, 603-611 (2004) · Zbl 1042.37060
[33] Gottwald, G. A.; Melbourne, I., Comment on reliability of the 0-1 test for chaos, Phys Rev E, 77, 028201 (2008)
[34] Poincare’, H., Les mthodes nouvelles de la mchanique cleste (1988), Gauthier-Villars, Paris
[35] Palit, S. K.; Mukherjee, S.; Bhattacharya, D. K., A high dimensional delay selection for the reconstruction of proper phase space with cross auto-correlation, Neurocomputing, 113, 49-57 (2013)
[36] Just, W.; Kantz, H., Some considerations on poincaré maps for chaotic flows, J Phys A: Math Gen, 33, 1, 163-170 (1999) · Zbl 0986.37071
[37] Houben, S.; Maubach, J.; Mattheij, R., An accelerated poincare’-map method for autonomous oscillators, Appl Math and Comput, 140, 2, 191-216 (2003) · Zbl 1027.65109
[38] Guzik, P.; Piskorski, J.; Krauze, T.; Wykretowicz, A.; Wysocki, H., Heart rate asymmetry by poincare’ plots of rr intervals, Biomed Tech, 51, 4, 10-25 (2006)
[39] Brennan, M.; Palaniswami, M.; Kamen, P., Poincare’ plot interpretation using a physiological model of hrv based on a network of oscillators, IEEE Trans Biomed Eng, 5, 283, H1873-86 (2001)
[40] Brennan, M.; Palaniswami, M.; Kamen, P., Do existing measures of poincare’ plot geometry reflect nonlinear features of heart rate variability?, IEEE Trans Biomed Eng, 48, 11, 1342-1347 (2001)
[41] Mukherjee, S.; Palit, S. K.; Bhattacharya, D. K., Approximate discrete dynamics of emg signal, Appl Math Comput, 243, 879-888 (2014) · Zbl 1335.92055
[42] Hilborn, R., Chaos and nonlinear dynamics (2001), Oxford university press
[43] Koebel, C. M.; Vermi, W.; Swann, J. B.; Zerafa, N.; Rodig, S. J.; Old, L. J., Adaptive immunity maintains occult cancer in an equilibrium state, Nature, 450, 903-907 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.