×

Travelling wave solutions for fully discrete FitzHugh-Nagumo type equations with infinite-range interactions. (English) Zbl 1482.65153

Summary: We investigate the impact of spatial-temporal discretisation schemes on the dynamics of a class of reaction-diffusion equations that includes the FitzHugh-Nagumo system. For the temporal discretisation we consider the family of six backward differential formula (BDF) methods, which includes the well-known backward-Euler scheme. The spatial discretisations can feature infinite-range interactions, allowing us to consider neural field models. We construct travelling wave solutions to these fully discrete systems in the small time-step limit by viewing them as singular perturbations of the corresponding spatially discrete system. In particular, we refine the previous approach by Hupkes and Van Vleck for scalar fully discretised systems, which is based on a spectral convergence technique that was developed by Bates, Chen and Chmaj.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
35B25 Singular perturbations in context of PDEs
35C07 Traveling wave solutions
92C20 Neural biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Bambusi, D.; Faou, E.; Grébert, B., Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation, Numer. Math., 123, 3, 461-492 (2013) · Zbl 1261.65133
[2] Bastiaansen, R.; Carter, P.; Doelman, A., Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems, Nonlinearity, 32, 8, 2759 (2019) · Zbl 1419.35104
[3] Bastiaansen, R.; Chirilus-Bruckner, M.; Doelman, A., Pulse solutions for an extended Klausmeier model with spatially varying coefficients, SIAM J. Appl. Dyn. Syst., 19, 1, 1-57 (2020) · Zbl 1431.35071
[4] Bates, P. W.; Chen, X.; Chmaj, A., Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35, 2, 520-546 (2003) · Zbl 1050.37041
[5] Bertram, R.; Greenstein, J. L.; Hinch, R.; Pate, E.; Reisert, J.; Sanderson, M. J.; Shannon, T. R.; Sneyd, J.; Winslow, R. L., Tutorials in Mathematical Biosciences II: Mathematical Modeling of Calcium Dynamics and Signal Transduction (2005), Springer Science & Business Media · Zbl 1078.92500
[6] Beyn, W. J., The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal., 10, 3, 379-405 (1990) · Zbl 0706.65080
[7] Bose, A.; Jones, C. K.R. T., Stability of the in-phase travelling wave solution in a pair of coupled nerve fibres, Indiana Univ. Math. J., 189-220 (1995) · Zbl 0837.35062
[8] Bressloff, P. C., Spatiotemporal dynamics of continuum neural fields, J. Phys. A, Math. Theor., 45, 3, Article 033001 pp. (2011) · Zbl 1263.92008
[9] Bressloff, P. C., Waves in Neural Media: From Single Neurons to Neural Fields, Lecture Notes on Mathematical Modelling in the Life Sciences (2014), Springer: Springer New York · Zbl 1296.92005
[10] Carpenter, G., A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Differ. Equ., 23, 3, 335-367 (1977) · Zbl 0341.35007
[11] Carter, P.; de Rijk, B.; Sandstede, B., Stability of traveling pulses with oscillatory tails in the FitzHugh-Nagumo system, J. Nonlinear Sci., 26, 5, 1369-1444 (2016) · Zbl 1361.35024
[12] Carter, P.; Sandstede, B., Fast pulses with oscillatory tails in the FitzHugh-Nagumo system, SIAM J. Math. Anal., 47, 5, 3393-3441 (2015) · Zbl 1327.35008
[13] Carter, P.; Sandstede, B., Unpeeling a homoclinic banana in the FitzHugh-Nagumo system, SIAM J. Appl. Dyn. Syst., 17, 1, 236-349 (2018) · Zbl 1407.35015
[14] Chen, C.-N.; Choi, Y., Traveling pulse solutions to FitzHugh-Nagumo equations, Calc. Var. Partial Differ. Equ., 54, 1, 1-45 (2015) · Zbl 1328.34037
[15] Chow, S.-N.; Mallet-Paret, J.; Van Vleck, E. S., Dynamics of lattice differential equations, Int. J. Bifurc. Chaos, 6, 09, 1605-1621 (1996) · Zbl 1005.39504
[16] Ciaurri, O.; Roncal, L.; Stinga, P. R.; Torrea, J. L.; Varona, J. L., Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math., 330, 688-738 (2018) · Zbl 1391.35388
[17] Ciuchi, F.; Mazzulla, A.; Scaramuzza, N.; Lenzi, E. K.; Evangelista, L. R., Fractional diffusion equation and the electrical impedance: experimental evidence in liquid-crystalline cells, J. Phys. Chem. C, 116, 15, 8773-8777 (2012)
[18] Cornwell, P., Opening the Maslov box for traveling waves in skew-gradient systems: counting eigenvalues and proving (in)stability, Indiana Univ. Math. J., 68, 1801-1832 (2019) · Zbl 1442.35208
[19] Cornwell, P.; Jones, C. K.R. T., On the existence and stability of fast traveling waves in a doubly diffusive FitzHugh-Nagumo system, SIAM J. Appl. Dyn. Syst., 17, 1, 754-787 (2018) · Zbl 1406.35041
[20] Doelman, A.; Kaper, T. J.; Zegeling, P. A., Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10, 2, 523 (1997) · Zbl 0905.35044
[21] Elmer, C. E.; Van Vleck Anisotropy, E. S., Propagation failure, and wave speedup in traveling waves of discretizations of a Nagumo PDE, J. Comput. Phys., 185, 2, 562-582 (2003) · Zbl 1019.65069
[22] Elmer, C. E.; Van Vleck, E. S., Existence of monotone traveling fronts for BDF discretizations of bistable reaction-diffusion equations, Second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems. Second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems, London, ON, 2001. Second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems. Second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems, London, ON, 2001, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 10, 1-3, 389-402 (2003) · Zbl 1034.65078
[23] Elmer, C. E.; Van Vleck, E. S., Dynamics of monotone travelling fronts for discretizations of Nagumo PDEs, Nonlinearity, 18, 4, 1605-1628 (2005) · Zbl 1181.35134
[24] Elmer, C. E.; Van Vleck, E. S., Spatially discrete FitzHugh-Nagumo equations, SIAM J. Appl. Math., 65, 4, 1153-1174 (2005) · Zbl 1089.34052
[25] Engel, K. J.; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194 (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0952.47036
[26] Erneux, T.; Nicolis, G., Propagating waves in discrete bistable reaction-diffusion systems, Physica D Nonlinear Phenom., 67, 1-3, 237-244 (1993) · Zbl 0787.92010
[27] Faou, E.; Jézéquel, T., Resonant time steps and instabilities in the numerical integration of Schrödinger equations, Differ. Integral Equ., 28, 3/4, 221-238 (2015) · Zbl 1363.37038
[28] Faye, G.; Scheel, A., Fredholm properties of nonlocal differential operators via spectral flow, Indiana Univ. Math. J., 63, 1311-1348 (2014) · Zbl 1310.47067
[29] Faye, G.; Scheel, A., Existence of pulses in excitable media with nonlocal coupling, Adv. Math., 270, 400-456 (2015) · Zbl 1304.35187
[30] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 6, 445-466 (1961)
[31] FitzHugh, R., Motion picture of nerve impulse propagation using computer animation, J. Appl. Physiol., 25, 5, 628-630 (1968)
[32] FitzHugh, R., Mathematical models of excitation and propagation in nerve, (Biological Engineering (1969), McGraw Hill: McGraw Hill New York)
[33] Gu, Q.; Schiff, E. A.; Grebner, S.; Wang, F.; Schwarz, R., Non-Gaussian transport measurements and the Einstein relation in amorphous silicon, Phys. Rev. Lett., 76, 17, 31-96 (1996)
[34] Gui, C.; Zhao, M., Traveling wave solutions of Allen-Cahn equation with a fractional Laplacian, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, 32, 4, 785-812 (2015) · Zbl 1326.35068
[35] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations. II, Springer Series in Computational Mathematics, vol. 14 (1996), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0859.65067
[36] Härterich, J.; Sandstede, B.; Scheel, A., Exponential dichotomies for linear non-autonomous functional differential equations of mixed type, Indiana Univ. Math. J., 51, 5, 1081-1109 (2002) · Zbl 1047.34079
[37] Hastings, S., On travelling wave solutions of the Hodgkin-Huxley equations, Arch. Ration. Mech. Anal., 60, 3, 229-257 (1976) · Zbl 0374.35004
[38] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 4, 500-544 (1952)
[39] Hoffman, A.; Mallet-Paret, J., Universality of crystallographic pinning, J. Dyn. Differ. Equ., 22, 2, 79-119 (2010) · Zbl 1216.34009
[40] Hupkes, H. J.; Sandstede, B., Travelling pulse solutions for the discrete FitzHugh-Nagumo system, SIAM J. Appl. Dyn. Syst., 9, 3, 827-882 (2010) · Zbl 1211.34007
[41] Hupkes, H. J.; Sandstede, B., Stability of pulse solutions for the discrete FitzHugh-Nagumo system, Trans. Am. Math. Soc., 365, 1, 251-301 (2013) · Zbl 1271.34008
[42] Hupkes, H. J.; Van Vleck, E. S., Negative diffusion and traveling waves in high dimensional lattice systems, SIAM J. Math. Anal., 45, 3, 1068-1135 (2013) · Zbl 1301.34098
[43] Hupkes, H. J.; Van Vleck, E. S., Travelling waves for complete discretizations of reaction diffusion systems, J. Dyn. Differ. Equ., 28, 3-4, 955-1006 (2016) · Zbl 1353.34094
[44] H.J. Hupkes, E.S. Van Vleck, Travelling waves for adaptive grid discretizations of reaction-diffusion systems I: well-posedness, preprint, 2019.
[45] H.J. Hupkes, E.S. Van Vleck, Travelling waves for adaptive grid discretizations of reaction-diffusion systems II: linear theory, preprint, 2019.
[46] H.J. Hupkes, E.S. Van Vleck, Travelling waves for adaptive grid discretizations of reaction-diffusion systems III: nonlinear theory, preprint, 2019.
[47] Jones, C. K.R. T., Stability of the travelling wave solutions of the FitzHugh-Nagumo system, Trans. Am. Math. Soc., 286, 2, 431-469 (1984) · Zbl 0567.35044
[48] Jones, C. K.R. T.; Kopell, N.; Langer, R., Construction of the FitzHugh-Nagumo pulse using differential forms, (Swinney, H.; Aris, G.; Aronson, D. G., Patterns and Dynamics in Reactive Media. Patterns and Dynamics in Reactive Media, IMA Volumes in Mathematics and Its Applications, vol. 37 (1991), Springer: Springer New York), 101-116 · Zbl 0742.92008
[49] Keener, J. P., Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47, 3, 556-572 (1987) · Zbl 0649.34019
[50] Keener, J. P., Frequency dependent decoupling of parallel excitable fibres, SIAM J. Appl. Math., 49, 1, 210-230 (1989) · Zbl 0691.35015
[51] Keener, J. P.; Sneyd, J., Mathematical Physiology, vol. 1 (1998), Springer: Springer New York · Zbl 0913.92009
[52] Krupa, M.; Sandstede, B.; Szmolyan, P., Fast and slow waves in the FitzHugh-Nagumo equation, J. Differ. Equ., 133, 1, 49-97 (1997) · Zbl 0898.34050
[53] Kwok, C., Waves in discrete spatial domains (2013), Bachelor Thesis
[54] Lillie, R. S., Factors affecting transmission and recovery in the passive iron nerve model, J. Gen. Physiol., 7, 4, 473-507 (1925)
[55] Mallet-Paret, J., The Fredholm alternative for functional differential equations of mixed type, J. Dyn. Differ. Equ., 11, 1-47 (1999) · Zbl 0927.34049
[56] Mallet-Paret, J., The global structure of traveling waves in spatially discrete dynamical systems, J. Dyn. Differ. Equ., 11, 1, 49-127 (1999) · Zbl 0921.34046
[57] Mallet-Paret, J., Crystallographic Pinning: Direction Dependent Pinning in Lattice Differential Equations (2001), Lefschetz Center for Dynamical Systems and Center for Control Sciences
[58] Mallet-Paret, J.; Verduyn Lunel, S. M., Exponential dichotomies and Wiener-Hopf factorizations for mixed-type functional differential equations, J. Differ. Equ. (2001), in press
[59] Pinto, D. J.; Ermentrout, G. B., Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses, SIAM J. Appl. Math., 62, 1, 206-225 (2001) · Zbl 1001.92021
[60] Ranvier, L. A., Lećons sur l’Histologie du Système Nerveux (1878), F. Savy: F. Savy Paris, par M.L. Ranvier, recueillies par M.Ed. Weber
[61] Schouten-Straatman, W. M.; Hupkes, H. J., Exponential dichotomies for nonlocal differential operators with infinite-range interactions (2019), preprint
[62] Schouten-Straatman, W. M.; Hupkes, H. J., Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions, Discrete Contin. Dyn. Syst., Ser. A, 39, 9, 5017-5083 (2019) · Zbl 1418.34141
[63] Schouten-Straatman, W. M.; Hupkes, H. J., Travelling waves for spatially discrete systems of FitzHugh-Nagumo type with periodic coefficients, SIAM J. Math. Anal., 51, 4, 3492-3532 (2019) · Zbl 1432.34084
[64] Sewalt, L.; Doelman, A., Spatially periodic multipulse patterns in a generalized Klausmeier-Gray-Scott model, SIAM J. Appl. Dyn. Syst., 16, 2, 1113-1163 (2017) · Zbl 1369.34067
[65] Sherratt, J. A., History-dependent patterns of whole ecosystems, Ecol. Complex., 14, 8-20 (2013)
[66] Sherratt, J. A., Using wavelength and slope to infer the historical origin of semiarid vegetation bands, Proc. Natl. Acad. Sci. USA, 112, 14, 4202-4207 (2015)
[67] Siero, E.; Doelman, A.; Eppinga, M. B.; Rademacher, J. D.M.; Rietkerk, M.; Siteur, K., Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes, Chaos Interdis. J. Nonlinear Sci., 25, 3, Article 036411 pp. (2015) · Zbl 1374.92167
[68] van der Stelt, S.; Doelman, A.; Hek, G.; Rademacher, J. D.M., Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model, J. Nonlinear Sci., 23, 1, 39-95 (2013) · Zbl 1270.35093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.