×

3D electrical impedance tomography reconstructions from simulated electrode data using direct inversion \(\mathbf{t}^{\mathbf{exp}}\) and Calderón methods. (English) Zbl 1481.65211

Summary: The first numerical implementation of a \(\mathbf{t}^{\mathbf{exp}}\) method in 3D using simulated electrode data is presented. Results are compared to Calderón’s method as well as more common TV and smoothness regularization-based methods. The \(\mathbf{t}^{\mathbf{exp}}\) method for EIT is based on tailor-made non-linear Fourier transforms involving the measured current and voltage data. Low-pass filtering in the non-linear Fourier domain is used to stabilize the reconstruction process. In 2D, \(\mathbf{t}^{\mathbf{exp}}\) methods have shown great promise for providing robust real-time absolute and time-difference conductivity reconstructions but have yet to be used on practical electrode data in 3D, until now. Results are presented for simulated data for conductivity and permittivity with disjoint non-radially symmetric targets on spherical domains and noisy voltage data. The 3D \(\mathbf{t}^{\mathbf{exp}}\) and Calderón methods are demonstrated to provide comparable quality to their 2D counterparts and hold promise for real-time reconstructions due to their fast, non-optimized, computational cost.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78A05 Geometric optics
92C55 Biomedical imaging and signal processing

References:

[1] A. Adler, J. H. Arnold, R. Bayford, A. Borsic, B. Brown, P. Dixon, T. J. Faes, I. Frerichs, H. Gagnon, Y. Gärber and B. Grychtol, GREIT: A unified approach to 2d linear EIT reconstruction of lung images, Physiological Measurement, 30 (2009), S35-S55.
[2] M. Alsaker; S. J. Hamilton; A. Hauptmann, A direct D-bar method for partial boundary data Electrical Impedance Tomography with a priori information, Inverse Problems and Imaging, 11, 427-454 (2017) · Zbl 1360.65265 · doi:10.3934/ipi.2017020
[3] G. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, 27, 153-172 (1988) · Zbl 0616.35082 · doi:10.1080/00036818808839730
[4] M. Alsaker; J. L. Mueller, A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. on Imaging Sciences, 9, 1619-1654 (2016) · Zbl 1381.94007 · doi:10.1137/15M1020137
[5] M. Alsaker and J. L. Mueller, EIT images of human inspiration and expiration using a D-bar method with spatial priors, Applied Computational Electromagnetics Society Journal, 34 (2019).
[6] M. Alsaker; J. L. Mueller; R. Murthy, Dynamic optimized priors for D-bar reconstructions of human ventilation using electrical impedance tomography, Journal of Computational and Applied Mathematics, 362, 276-294 (2019) · Zbl 1418.92067 · doi:10.1016/j.cam.2018.07.039
[7] D. C. Barber; B. H. Brown, Applied potential tomography, Journal of Physics E: Scientific Instruments, 17, 723-733 (1984) · doi:10.1088/0022-3735/17/9/002
[8] R. Beals; R. R. Coifman, Multidimensional inverse scatterings and nonlinear partial differential equations, Pseudodifferential Operators and Applications, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 43, 45-70 (1985) · Zbl 0575.35011 · doi:10.1090/pspum/043/812283
[9] P. Blomgren; T. F. Chan, Modular solvers for image restoration problems using the discrepancy principle, Numerical Linear Algebra with Applications, 9, 347-358 (2002) · Zbl 1071.68557 · doi:10.1002/nla.278
[10] G. Boverman, D. Isaacson, T.-J. Kao, Saulnier, G. J. and J. C. Newell, Methods for direct image reconstruction for EIT in two and three dimensions, in Proceedings of the 2008 Electrical Impedance Tomography Conference, (Dartmouth College, Hanover, New Hampshire, USA), (2008).
[11] G. Boverman; T.-J. Kao; D. Isaacson; G. J. Saulnier, An implementation of Calderón’s method for 3-D limited view EIT, IEEE Trans. Med. Imaging, 28, 1073-1082 (2009) · doi:10.1109/TMI.2009.2012892
[12] J. Bikowski, K. Knudsen and J. L. Mueller, Direct numerical reconstruction of conductivities in three dimensions using scattering transforms, Inverse Problems, 27 (2011), 19 pp. · Zbl 1232.78007
[13] J. Bikowski; J. Mueller, 2D EIT reconstructions using Calderón’s method, Inverse Problems and Imaging, 2, 43-61 (2008) · Zbl 1141.35467 · doi:10.3934/ipi.2008.2.43
[14] L. Borcea, Addendum to “Electrical impedance tomography”, Inverse Problems, 19, 997-998 (2002) · doi:10.1088/0266-5611/19/4/501
[15] L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), R99-R136. · Zbl 1031.35147
[16] B. H. Brown, Medical impedance tomography and process impedance tomography: A brief review, Measurement Science and Technology, 12, 991-996 (2001) · doi:10.1088/0957-0233/12/8/301
[17] B. H. Brown, Electrical impedance tomography (EIT): A review, J Med. Eng. & Tech., (2009), 97-108.
[18] A.-P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, (1980), 65-73.
[19] K. S. Cheng; D. Isaacson; J. C. Newell; D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36, 918-924 (1989)
[20] H. Cornean; K. Knudsen; S. Siltanen, Towards a \(d\)-bar reconstruction method for three-dimensional EIT, Journal of Inverse and Ill-Posed Problems, 14, 111-134 (2006) · Zbl 1111.35108 · doi:10.1515/156939406777571102
[21] F. Delbary; P. C. Hansen; K. Knudsen, Electrical impedance tomography: 3D reconstructions using scattering transforms, Applicable Analysis, 91, 737-755 (2012) · Zbl 1238.35183 · doi:10.1080/00036811.2011.598863
[22] F. Delbary; K. Knudsen, Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem, Inverse Problems and Imaging, 8, 991-1012 (2014) · Zbl 1328.35303 · doi:10.3934/ipi.2014.8.991
[23] M. DeAngelo; J. L. Mueller, 2d D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform, Physiological Measurement, 31, 221-232 (2010) · doi:10.1088/0967-3334/31/2/008
[24] M. Dodd; J. L. Mueller, A real-time D-bar algorithm for 2-D electrical impedance tomography data, Inverse Problems and Imaging, 8, 1013-1031 (2014) · Zbl 1328.35304 · doi:10.3934/ipi.2014.8.1013
[25] L. D. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 10, 1033-1035 (1966) · Zbl 0147.09404
[26] N. Goren, J. Avery, T. Dowrick, E. Mackle, A. Witkowska-Wrobel, D. Werring and D. Holder, Multi-frequency electrical impedance tomography and neuroimaging data in stroke patients, Scientific Data, 5 (2018), 180112.
[27] G. González; J. M. J. Huttunen; V. Kolehmainen; A. Seppänen; M. Vauhkonen, Experimental evaluation of 3d electrical impedance tomography with total variation prior, Inverse Problems in Science and Engineering, 24, 1411-1431 (2016)
[28] P. C. Hansen, Analysis of discrete ill-posed problems by means of the l-curve, SIAM Review, 34, 561-580 (1992) · Zbl 0770.65026 · doi:10.1137/1034115
[29] A. Hauptmann, Approximation of full-boundary data from partial-boundary electrode measurements, Inverse Problems, 33 (2017), 125017, 22 pp. · Zbl 1421.92004
[30] S. J. Hamilton, C. N. L. Herrera, J. L. Mueller and A. Von Herrmann, A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2-D, Inverse Problems, 28 (2012), 095005, 24 pp. · Zbl 1253.35221
[31] S. J. Hamilton, W. R. B. Lionheart and A. Adler, Comparing d-bar and common regularization-based methods for electrical impedance tomography, Physiological Measurement, 40 (2019), 044004.
[32] N. Hyvönen; L. Mustonen, Generalized linearization techniques in electrical impedance tomography, Numerische Mathematik, 140, 95-120 (2018) · Zbl 1402.65143 · doi:10.1007/s00211-018-0959-1
[33] S. J. Hamilton, J. L. Mueller and T. R. Santos, Robust computation in 2d absolute eit (a-eit) using d-bar methods with the ’exp’ approximation, Physiological Measurement, 39 (2018), 064005.
[34] D. S. Holder (ed.), Electrical Impedance Tomography; Methods, History and Applications, IOP Publishing Ltd., 2005.
[35] L. Horesh, Some Novel Approaches in Modelling and Image Reconstruction for Multi Frequency Electrical Impedance Tomography of the Human Brain, Ph.D. thesis, University of London, 2006.
[36] M. Hallaji, A. Seppänen and M. Pour-Ghaz, Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete, Smart Materials and Structures, 23 (2014), 085001.
[37] A. Hauptmann, M. Santacesaria and S. Siltanen, Direct inversion from partial-boundary data in electrical impedance tomography, Inverse Problems, 33 (2017), 025009, 26 pp. · Zbl 1515.35347
[38] D. Isaacson; J. L. Mueller; J. C. Newell; S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography, IEEE Trans. Med. Imaging, 23, 821-828 (2004) · doi:10.1109/TMI.2004.827482
[39] D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Imaging cardiac activity by the D-bar method for electrical impedance tomography, Physiological Measurement, 27 (2006), S43-S50.
[40] J. P. Kaipio; V. Kolehmainen; E. Somersalo; M. Vauhkonen, Statistical inversion and monte carlo sampling methods in electrical impedance tomography, Inverse Problems, 16, 1487-1522 (2000) · Zbl 1044.78513 · doi:10.1088/0266-5611/16/5/321
[41] K. Knudsen; M. Lassas; J. L. Mueller; S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Problems and Imaging, 3, 599-624 (2009) · Zbl 1184.35314 · doi:10.3934/ipi.2009.3.599
[42] K. Knudsen and J. L. Mueller, The born approximation and Calderón’s method for reconstructions of conductivities in 3-D, Discrete and Continuous Dynamical Systems, (2011), 884-893.
[43] C. Lieberman; K. Willcox; O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM Journal on Scientific Computing, 32, 2523-2542 (2010) · Zbl 1217.65123 · doi:10.1137/090775622
[44] E. Malone, M. Jehl, S. Arridge, T. Betcke and D. Holder, Stroke type differentiation using spectrally constrained multifrequency EIT: Evaluation of feasibility in a realistic head model, Physiological Measurement, 35 (2014), 1051.
[45] P. A. Muller; J. L. Mueller; M. M. Mellenthin, Real-time implementation of Calderón’s method on subject-specific domains, IEEE Trans. Med. Imaging, 36, 1868-1875 (2017)
[46] J. L. Mueller, P. Muller, M. Mellenthin, R. Murthy, M. Alsaker M. Capps, R. Deterding, S. D. Sagel and E. DeBoer, Estimating regions of air trapping from electrical impedance tomography data, Physiological Measurement, 39 (2018), 05NT01.
[47] P. A. Muller, J. L. Mueller, M. Mellenthin, M. Capps R. Murthy, B. D. Wagner, M. Alsaker, R. Deterding, S. D. Sagel and J. Hoppe, Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis, Physiological Measurement, 39 (2018), 045008.
[48] J. L. Mueller and S. Siltanen, Linear and nonlinear Inverse Problems with Practical Applications, Computational Science & Engineering, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012. · Zbl 1262.65124
[49] A. I. Nachman, Reconstructions from boundary measurements, Annals of Mathematics, 128, 531-576 (1988) · Zbl 0675.35084 · doi:10.2307/1971435
[50] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics, 143, 71-96 (1996) · Zbl 0857.35135 · doi:10.2307/2118653
[51] R. G. Novikov and G. M. Khenkin, The \(\overline\partial \)-equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk., 42 (1987), 93-152,255. · Zbl 0674.35085
[52] A. Nissinen; A. Lehikoinen; M. Mononen; S. Lähteenm \(\ddot{\text{k}}\) i; M. Vauhkonen, Estimation of the bubble size and bubble loading in a flotation froth using electrical resistance tomography, Minerals Engineering, 69, 1-12 (2014) · doi:10.1016/j.mineng.2014.07.001
[53] R. G. Novikov, A multidimensional inverse spectral problem for the equation \(-\delta\psi+(v(x)-eu(x))\psi = 0\), Functional Analysis and Its Applications, 22, 263-272 (1988) · Zbl 0689.35098 · doi:10.1007/BF01077418
[54] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd editon, Springer Series in Operations Research, Springer Verlag, New York, 2006. · Zbl 1104.65059
[55] W. Padden, 3D Simpson’s Integrator, 2008, https://www.mathworks.com/matlabcentral/fileexchange/23250-3d-simpson-s-integrator.
[56] C. Rodgers, S2kit mex file for matlab, https://rodgers.org.uk/software/s2kit, Accessed: 2020-04-29.
[57] L. I. Rudin; S. Osher; E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[58] E. Somersalo; M. Cheney; D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52, 1023-1040 (1992) · Zbl 0759.35055 · doi:10.1137/0152060
[59] S. Siltanen; J. Mueller; D. Isaacson, An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem, Inverse Problems, 16, 681-699 (2000) · Zbl 0962.35193 · doi:10.1088/0266-5611/16/3/310
[60] J. Sylvester; G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Annals of Mathematics, 125, 153-169 (1987) · Zbl 0625.35078 · doi:10.2307/1971291
[61] A. Seppänen; M. Vauhkonen; P. J. Vauhkonen; E. Somersalo; J. P. Kaipio, State estimation with fluid dynamical evolution models in process tomography - an application to impedance tomography, Inverse Problems, 17, 467-483 (2001) · Zbl 0986.35134 · doi:10.1088/0266-5611/17/3/307
[62] H. S. Tapp; A. J. Peyton; E. K. Kemsley; R. H. Wilson, Chemical engineering applications of electrical process tomography, Sensors and Actuators B: Chemical, 92, 17-24 (2003) · doi:10.1016/S0925-4005(03)00126-6
[63] C. R. Vogel, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, SIAM, 2002. · Zbl 1008.65103
[64] M. Vauhkonen; D. Vadász; P. A. Karjalainen; E. Somersalo; J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE Trans. Med. Imaging, 17, 285-293 (1998) · doi:10.1109/42.700740
[65] Z. Wang, E. P. Simoncelli and A. C. Bovik, Multiscale structural similarity for image quality assessment, in The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, IEEE, (2003), 1398-1402.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.