×

An average John theorem. (English) Zbl 1481.46016

The author uses the following definition: An infinite metric space \(({\mathcal{M}},d_{\mathcal{M}})\) embeds into a normed space \((Z,\|\cdot\|_Z)\) with quadratic average distortion \(D\) if for every Borel probability measure \(\mu\) on \({\mathcal{M}}\) there exists a \(D\)-Lipschitz mapping \(f=f_\mu:{\mathcal{M}}\to Z\) that satisfies \[ \iint_{{\mathcal{M}}\times {\mathcal{M}}} \|f(x)-f(y)\|_{\!Z}^{2\phantom{p}}\, \mathrm{d}\mu(x)\, \mathrm{d}\mu(y)\ge \iint_{{\mathcal{M}}\times {\mathcal{M}}} d_{\mathcal{M}}(x,y)^2\, \mathrm{d} \mu(x) \, \mathrm{d}\mu(y). \]
The \(\omega\)-snowflake, \(\omega\in(0,1]\), of a metric space \(({\mathcal{M}},d_{\mathcal{M}})\) is the metric space \(({\mathcal{M}},d_{\mathcal{M}}^\omega)\).
The author proves (Theorem 1): For every integer \(k\ge 2\), the \(\frac12\)-snowflake of any \(k\)-dimensional normed space embeds into a Hilbert space with quadratic average distortion \(\mathsf{C}\sqrt{\log k}\), where \(\mathsf{C}>0\) is a universal constant.
An extremely important feature of this result is that the distortion is logarithmic in \(k\). As the author shows, other conditions of the statement, namely, (1) \(\frac12\)-snowflakes and (2) lower estimate only on average, can be replaced by conditions which are closer to a bilipschitz embedding only at the price of replacing the logarithmic in \(k\) upper estimate for distortion by a power-type estimate.
The author named the theorem above “an average John theorem” because of its similarity with the classical theorem of F. John [Studies Essays, pres. to R. Courant, 187–204 (1948; Zbl 0034.10503)]: For every \(k\in\mathbb{N}\), any \(k\)-dimensional normed space admits a linear embedding into a Hilbert space with distortion at most \(\sqrt{k}\).
The paper presents (1) generalizations of the mentioned above Theorem 1, (2) results showing that the obtained average John theorems are sharp in some directions, (3) applications of the obtained results to embeddability problems. The complete listing of all of the significant results obtained in the paper would be too long, we provide the author’s summary instead: “We deduce from this (optimal) statement that if an \(n\)-vertex expander embeds with average distortion \(D\ge 1\) into [a normed space] \(X\), then necessarily \(\dim(X)\ge n^{\Omega(1/D)}\), which is sharp by the work of W. B. Johnson et al. [Lect. Notes Math. 1267, 177–184 (1987; Zbl 0631.46016)]. This improves over the previously best-known bound \(\dim(X)\ge C (\log n)^2/D^2\) of N. Linial et al. [Combinatorica 15, No. 2, 215–245 (1995; Zbl 0827.05021)], strengthens a theorem of J. Matoušek [Isr. J. Math. 93, 333–344 (1996; Zbl 0851.46007)] which resolved questions of W. B. Johnson and J. Lindenstrauss [Contemp. Math. 26, 189–206 (1984; Zbl 0539.46017)], J. Bourgain [Isr. J. Math. 52, 46–52 (1985; Zbl 0657.46013)] and J. Arias de Reyna and L. Rodríguez-Piazza [Isr. J. Math. 79, No. 1, 103–111 (1992; Zbl 0807.46015)], and answers negatively a question that was posed (for algorithmic purposes) by A. Andoni et al. [in: Proceedings of the 49th annual ACM SIGACT symposium on theory of computing, STOC ’17, Montreal, QC, Canada, June 19–23, 2017. New York, NY: Association for Computing Machinery (ACM). 902–913 (2017; Zbl 1370.68066)].”
The proof of the main result is based on nonlinear spectral gaps and duality (application of the Hahn-Banach theorem).
The paper contains an extensive survey of related results and open problems.
Some parts of this work were announced in [A. Naor, LIPIcs – Leibniz Int. Proc. Inform. 77, Article 50, 16 p. (2017; Zbl 1433.68312)].

MSC:

46B85 Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science
30L05 Geometric embeddings of metric spaces
51F30 Lipschitz and coarse geometry of metric spaces
68R12 Metric embeddings as related to computational problems and algorithms

References:

[1] 10.1016/j.aim.2011.08.003 · Zbl 1250.46016 · doi:10.1016/j.aim.2011.08.003
[2] 10.1007/s12220-013-9390-0 · Zbl 1319.46016 · doi:10.1007/s12220-013-9390-0
[3] 10.1109/SFCS.1985.30 · doi:10.1109/SFCS.1985.30
[4] 10.1002/rsa.3240050203 · Zbl 0798.05048 · doi:10.1002/rsa.3240050203
[5] ; Andoni, Proceedings of the International Congress of Mathematicians, IV, 3287 (2018)
[6] 10.24033/asens.2363 · doi:10.24033/asens.2363
[7] 10.1145/3188745.3188846 · Zbl 1427.68327 · doi:10.1145/3188745.3188846
[8] 10.1109/FOCS.2018.00024 · doi:10.1109/FOCS.2018.00024
[9] 10.1145/3055399.3055418 · Zbl 1370.68066 · doi:10.1145/3055399.3055418
[10] 10.1016/j.aam.2006.08.008 · Zbl 1132.65018 · doi:10.1016/j.aam.2006.08.008
[11] 10.1007/BF02764804 · Zbl 0807.46015 · doi:10.1007/BF02764804
[12] 10.4064/sm-57-2-147-190 · Zbl 0342.46034 · doi:10.4064/sm-57-2-147-190
[13] 10.1007/s00454-009-9162-6 · Zbl 1275.20044 · doi:10.1007/s00454-009-9162-6
[14] 10.1007/s11511-007-0013-0 · Zbl 1162.22005 · doi:10.1007/s11511-007-0013-0
[15] 10.1007/BF01896971 · Zbl 0788.46050 · doi:10.1007/BF01896971
[16] ; Ball, Séminaire Bourbaki, 2011/2012. Astérisque, 352, 147 (2013) · Zbl 1275.00032
[17] 10.1007/BF01231769 · Zbl 0803.47037 · doi:10.1007/BF01231769
[18] ; Banach, Théorie des opérations linéaires. Monogr. Mat., 1 (1932) · JFM 58.0420.01
[19] 10.4007/annals.2005.162.643 · Zbl 1114.46007 · doi:10.4007/annals.2005.162.643
[20] 10.1007/s000390050108 · Zbl 0954.46014 · doi:10.1007/s000390050108
[21] 10.1142/S1793525316500011 · Zbl 1348.46024 · doi:10.1142/S1793525316500011
[22] 10.1090/coll/048 · doi:10.1090/coll/048
[23] 10.1007/978-3-642-66451-9 · doi:10.1007/978-3-642-66451-9
[24] 10.1007/BF02776078 · Zbl 0657.46013 · doi:10.1007/BF02776078
[25] 10.1007/BF02766125 · Zbl 0643.46013 · doi:10.1007/BF02766125
[26] 10.2307/2000132 · Zbl 0617.46024 · doi:10.2307/2000132
[27] ; Bretagnolle, C. R. Acad. Sci. Paris, 261, 2153 (1965) · Zbl 0255.42022
[28] 10.1007/978-3-0348-0212-3 · Zbl 1252.46001 · doi:10.1007/978-3-0348-0212-3
[29] 10.1007/s00039-002-8237-9 · Zbl 1011.46037 · doi:10.1007/s00039-002-8237-9
[30] 10.4064/sm-24-2-113-190 · Zbl 0204.13703 · doi:10.4064/sm-24-2-113-190
[31] 10.2140/pjm.1995.168.11 · Zbl 0823.46016 · doi:10.2140/pjm.1995.168.11
[32] 10.1515/9781400869312-013 · doi:10.1515/9781400869312-013
[33] 10.4064/sm8396-4-2016 · Zbl 1355.46022 · doi:10.4064/sm8396-4-2016
[34] ; Christensen, Publ. Dép. Math. (Lyon), 10, 29 (1973) · Zbl 0302.43001
[35] ; Chung, Combinatorics : Paul Erdős is eighty, II. Bolyai Soc. Math. Stud., 2, 157 (1996) · Zbl 0837.00020
[36] 10.2307/1989630 · Zbl 0015.35604 · doi:10.2307/1989630
[37] 10.1512/iumj.1978.27.27068 · Zbl 0409.46067 · doi:10.1512/iumj.1978.27.27068
[38] 10.2307/2044034 · Zbl 0497.46052 · doi:10.2307/2044034
[39] 10.4153/CMB-1995-042-8 · Zbl 0836.46013 · doi:10.4153/CMB-1995-042-8
[40] ; David, Fractured fractals and broken dreams. Oxford Lect. Ser. Math. Appl., 7 (1997) · Zbl 0887.54001
[41] 10.2307/1969275 · Zbl 0063.01058 · doi:10.2307/1969275
[42] 10.1007/BF02589549 · Zbl 0196.14002 · doi:10.1007/BF02589549
[43] 10.1007/BF02762802 · Zbl 0259.46012 · doi:10.1007/BF02762802
[44] ; Enflo, Séminaire Maurey-Schwartz, 1975/1976 : Espaces, Lp, applications radonifiantes et géométrie des espaces de Banach (1976) · Zbl 0324.00016
[45] 10.4064/sm-56-2-121-155 · Zbl 0344.46052 · doi:10.4064/sm-56-2-121-155
[46] ; Figiel, C. R. Acad. Sci. Paris Sér. A, 279, 611 (1974) · Zbl 0326.46007
[47] 10.1007/BF03018603 · JFM 37.0348.02 · doi:10.1007/BF03018603
[48] ; Gelfand, Mat. Sb., 4, 235 (1938) · Zbl 0020.36701
[49] 10.1016/j.ejc.2012.03.019 · Zbl 1246.05046 · doi:10.1016/j.ejc.2012.03.019
[50] 10.1007/978-3-0346-0422-2_5 · doi:10.1007/978-3-0346-0422-2_5
[51] 10.1007/s000390300002 · Zbl 1122.20021 · doi:10.1007/s000390300002
[52] 10.1016/0095-8956(77)90068-5 · Zbl 0369.05042 · doi:10.1016/0095-8956(77)90068-5
[53] 10.1007/BF02589410 · Zbl 0071.32801 · doi:10.1007/BF02589410
[54] 10.1007/978-1-4613-0131-8 · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8
[55] 10.1515/crll.1980.313.72 · Zbl 0412.46017 · doi:10.1515/crll.1980.313.72
[56] 10.1016/j.topol.2015.06.011 · Zbl 1328.51003 · doi:10.1016/j.topol.2015.06.011
[57] 10.1090/S0273-0979-06-01126-8 · Zbl 1147.68608 · doi:10.1090/S0273-0979-06-01126-8
[58] 10.1007/s10711-004-1843-y · Zbl 1108.58014 · doi:10.1007/s10711-004-1843-y
[59] 10.4153/CJM-1972-089-7 · Zbl 0222.46009 · doi:10.4153/CJM-1972-089-7
[60] ; John, Studies and essays presented to R Courant on his 60th birthday, 187 (1948)
[61] 10.1090/conm/026/737400 · Zbl 0539.46017 · doi:10.1090/conm/026/737400
[62] 10.1016/S1874-5849(01)80003-6 · doi:10.1016/S1874-5849(01)80003-6
[63] 10.1007/BFb0078145 · doi:10.1007/BFb0078145
[64] 10.1112/blms/bdt096 · Zbl 1297.46021 · doi:10.1112/blms/bdt096
[65] 10.5209/rev_REMA.2008.v21.n1.16426 · Zbl 1156.46003 · doi:10.5209/rev_REMA.2008.v21.n1.16426
[66] 10.1142/S0218196705002712 · Zbl 1097.22007 · doi:10.1142/S0218196705002712
[67] 10.1007/s00208-005-0745-0 · Zbl 1102.46051 · doi:10.1007/s00208-005-0745-0
[68] 10.4064/fm-22-1-77-108 · Zbl 0009.03904 · doi:10.4064/fm-22-1-77-108
[69] 10.1007/s00209-011-0866-y · Zbl 1284.20043 · doi:10.1007/s00209-011-0866-y
[70] 10.1112/S0024609302001200 · Zbl 1029.30014 · doi:10.1112/S0024609302001200
[71] 10.2140/apde.2021.14.45 · Zbl 1479.46014 · doi:10.2140/apde.2021.14.45
[72] 10.1215/00127094-2008-029 · Zbl 1158.46049 · doi:10.1215/00127094-2008-029
[73] 10.1142/S1793525309000163 · Zbl 1186.46022 · doi:10.1142/S1793525309000163
[74] 10.1007/s00222-004-0400-5 · Zbl 1074.46004 · doi:10.1007/s00222-004-0400-5
[75] 10.1307/mmj/1028998906 · doi:10.1307/mmj/1028998906
[76] ; Lindenstrauss, Classical Banach spaces, I : Sequence spaces. Ergeb. Math. Grenzgeb., 92 (1977) · Zbl 0362.46013
[77] ; Lindenstrauss, Classical Banach spaces, II : Function spaces. Ergeb. Math. Grenzgeb., 97 (1979) · Zbl 0403.46022
[78] 10.1007/BF01200757 · Zbl 0827.05021 · doi:10.1007/BF01200757
[79] 10.1006/jctb.2000.1953 · Zbl 1026.05032 · doi:10.1006/jctb.2000.1953
[80] 10.1007/s00039-002-8251-y · Zbl 0991.05037 · doi:10.1007/s00039-002-8251-y
[81] ; Lions, C. R. Acad. Sci. Paris, 251, 1853 (1960) · Zbl 0118.10702
[82] 10.4064/sm-41-3-225-241 · Zbl 0237.46004 · doi:10.4064/sm-41-3-225-241
[83] ; Matoušek, Comment. Math. Univ. Carolin., 31, 99 (1990) · Zbl 0695.54013
[84] ; Matoušek, Comment. Math. Univ. Carolin., 33, 51 (1992) · Zbl 0758.46019
[85] 10.1007/BF02761110 · Zbl 0851.46007 · doi:10.1007/BF02761110
[86] 10.1007/BF02773799 · Zbl 0947.46007 · doi:10.1007/BF02773799
[87] 10.1007/978-1-4613-0039-7 · doi:10.1007/978-1-4613-0039-7
[88] 10.4064/sm-1-1-83-85 · JFM 55.0242.01 · doi:10.4064/sm-1-1-83-85
[89] 10.1016/j.aim.2003.12.001 · Zbl 1088.46007 · doi:10.1016/j.aim.2003.12.001
[90] 10.4007/annals.2008.168.247 · Zbl 1187.46014 · doi:10.4007/annals.2008.168.247
[91] 10.4171/JEMS/362 · Zbl 1266.46016 · doi:10.4171/JEMS/362
[92] 10.2478/agms-2013-0003 · Zbl 1297.54037 · doi:10.2478/agms-2013-0003
[93] 10.1007/s10240-013-0053-2 · Zbl 1306.46021 · doi:10.1007/s10240-013-0053-2
[94] 10.1215/00127094-3119525 · Zbl 1316.05109 · doi:10.1215/00127094-3119525
[95] ; Milman, C. R. (Dokl.) Acad. Sci. URSS, 20, 243 (1938) · Zbl 0019.41601
[96] 10.2307/2034050 · Zbl 0123.38302 · doi:10.2307/2034050
[97] 10.1093/imrn/rnu075 · Zbl 1334.46020 · doi:10.1093/imrn/rnu075
[98] 10.1090/S0002-9904-1970-12466-1 · Zbl 0191.34603 · doi:10.1090/S0002-9904-1970-12466-1
[99] 10.1007/s11537-012-1222-7 · Zbl 1261.46013 · doi:10.1007/s11537-012-1222-7
[100] 10.1017/S0963548311000757 · Zbl 1247.05104 · doi:10.1017/S0963548311000757
[101] ; Naor, Anal. Geom. Metr. Spaces, 2, 1 (2014) · Zbl 1316.46023
[102] 10.1016/j.crma.2015.09.005 · Zbl 1344.46017 · doi:10.1016/j.crma.2015.09.005
[103] 10.4007/annals.2016.184.3.9 · Zbl 1364.46021 · doi:10.4007/annals.2016.184.3.9
[104] 10.4230/LIPIcs.SoCG.2017.50 · Zbl 1433.68312 · doi:10.4230/LIPIcs.SoCG.2017.50
[105] ; Naor, Proceedings of the International Congress of Mathematicians, I, 759 (2018) · Zbl 1444.46019
[106] 10.1215/S0012-7094-06-13415-4 · Zbl 1108.46012 · doi:10.1215/S0012-7094-06-13415-4
[107] 10.1007/s11856-017-1475-1 · Zbl 1372.46020 · doi:10.1007/s11856-017-1475-1
[108] 10.1016/j.jfa.2005.04.003 · Zbl 1104.68087 · doi:10.1016/j.jfa.2005.04.003
[109] 10.1017/fmp.2016.1 · Zbl 1344.46018 · doi:10.1017/fmp.2016.1
[110] 10.1112/S0010437X11005343 · Zbl 1267.20057 · doi:10.1112/S0010437X11005343
[111] 10.4086/toc.2009.v005a006 · Zbl 1213.05126 · doi:10.4086/toc.2009.v005a006
[112] 10.1007/BF02398436 · Zbl 0828.46005 · doi:10.1007/BF02398436
[113] 10.1515/9783110264012 · Zbl 1279.46001 · doi:10.1515/9783110264012
[114] 10.1142/S0129167X04002430 · Zbl 1056.46046 · doi:10.1142/S0129167X04002430
[115] 10.1215/S0012-7094-39-00522-3 · Zbl 0021.32601 · doi:10.1215/S0012-7094-39-00522-3
[116] 10.1007/BF02760337 · Zbl 0344.46030 · doi:10.1007/BF02760337
[117] 10.1007/BF02791068 · Zbl 0427.46048 · doi:10.1007/BF02791068
[118] 10.1090/S0065-9266-10-00601-0 · Zbl 1213.46002 · doi:10.1090/S0065-9266-10-00601-0
[119] 10.1007/s00454-007-9047-5 · Zbl 1158.68050 · doi:10.1007/s00454-007-9047-5
[120] ; Raynaud, J. Operator Theory, 48, 41 (2002) · Zbl 1029.46102
[121] 10.1007/BF02385837 · Zbl 0336.46018 · doi:10.1007/BF02385837
[122] 10.1007/s00013-014-0710-9 · Zbl 1331.46050 · doi:10.1007/s00013-014-0710-9
[123] 10.1007/BF02564121 · JFM 53.0259.03 · doi:10.1007/BF02564121
[124] 10.1007/s10711-005-5230-0 · Zbl 1110.20026 · doi:10.1007/s10711-005-5230-0
[125] 10.2307/1989894 · Zbl 0019.41502 · doi:10.2307/1989894
[126] 10.2307/1992885 · Zbl 0072.32402 · doi:10.2307/1992885
[127] 10.1515/9781400874842-016 · doi:10.1515/9781400874842-016
[128] ; Thorin, Comm. Sém. Math. Univ. Lund, 9, 1 (1948)
[129] 10.1007/978-3-642-66037-5 · doi:10.1007/978-3-642-66037-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.