×

A geometric representation of integral solutions of \(x^2 + xy + y^2 = m^2\). (English) Zbl 1481.11028

About 100 years ago N. Anning [Discussions: Relating to a geometric representation of integral solutions of certain quadratic equations. Am. Math. Mon. 22, No. 9, 321 (1915; doi:10.2307/2972036)] found a constellation of 12 points on a circle such that each mutual distance is an integer and is among the solutions \((x,y)\) of the Diophantine equation \[x^2+xy+y^2=7^2 \cdot 13^2,\] i.e. for each solution \((x,y)\) the numbers \(|x|\) and \(|y|\) are equal to one of the distances or zero.
Moreover, Anning [loc. cit.] conjectured that there also exists an arrangement of 48 points on a circle, such that each mutual distance is an integer and is among the solutions of the Diophantine equation \[x^2+xy+y^2=7^2\cdot 13^2\cdot 19^2 \cdot 31^2.\]
In the paper under review the authors prove Anning’s conjecture. Moreover, they show that for each integer \(n\) there exist \(3\cdot 2^n\) points arranged on a circle such that each mutual distance is an integer and is among the solutions of the Diophantine equation \[x^2+xy+y^2=p_1^2p_2^2 \cdots p_n^2,\] with different prime numbers \(p_i\) of the form \(6k+1\), \(k\in \mathbb N\).

MSC:

11D09 Quadratic and bilinear Diophantine equations
11H55 Quadratic forms (reduction theory, extreme forms, etc.)
52C10 Erdős problems and related topics of discrete geometry
Full Text: DOI

References:

[1] Anderson, William; Simons, William; Mauldon, J. G.; Smith, James C., Problems and Solutions: Solutions of Elementary Problems: E2697, Amer. Math. Monthly, 86, 3, 225 (1979) · doi:10.2307/2321536
[2] Anning, Norman, Questions and Discussions: Relating to a Geometric Representation of Integral Solutions of Certain Quadratic Equations, American Mathematical Monthly, 22, 9, 321 (1915) · doi:10.2307/2972036
[3] Anning, Norman; Erdős, Paul, Integral distances, Bull. Amer. Math. Soc., 51, 598-600 (1945) · Zbl 0063.00098 · doi:10.1090/S0002-9904-1945-08407-9
[4] Bat-Ochir, Ganbileg, On the number of points with pairwise integral distances on a circle, Discrete Applied Mathematics (2018) · Zbl 1409.52017
[5] Cox, David A., Primes of the form x^2 + ny^2. Fermat, class field theory, and complex multiplication (2013), John Wiley & Sons: John Wiley & Sons, Hoboken, NJ · Zbl 1275.11002
[6] Dickson, Leonard Eugene, Introduction to the theory of numbers (1951), The University of Chicago Press: The University of Chicago Press, Chicago, IL · JFM 55.0092.19
[7] Euler, Leonhard, Opera postuma, Vol. I., Chapter: Fragmenta arithmetica ex Adversariis mathematicis depromta, C: Analysis Diophantea, pp. 204-263, Eggers, Petropolis, 1862.
[8] Friedelmayer, Jean-Pierre, Points à distances entìeres sur un cercle, Bulletin de l’APMEP, 522, 92-104 (2017)
[9] Harborth, Heiko, Karl der Grosse und sein Nachwirken. 1200 Jahre Kultur und Wissenschaft in Europa, Chapter: Integral Distances in Point Sets, pp. 213-224, Brepols Publishers, Turnhout, 1998. · Zbl 0956.52021
[10] Harborth, Heiko; Kemnitz, Arnfried; Möller, Meinhard, An upper bound for the minimum diameter of integral point sets, Discrete & Computational Geometry, 9, 427-432 (1993) · Zbl 0784.52020 · doi:10.1007/BF02189331
[11] Kreisel, Tobias; Kurz, Sascha, There are integral heptagons, no three points on a line, no four on a circle, Discrete Comput. Geom., 39, 4, 786-790 (2008) · Zbl 1145.52010 · doi:10.1007/s00454-007-9038-6
[12] Kurz, Sascha; Wassermann, Alfred, On the minimum diameter of plane integral point sets, Ars Combin., 101, 265-287 (2011) · Zbl 1265.52018
[13] Varona, Juan L., Rational values of the arccosine function, Cent. Eur. J. Math., 4, 2, 319-322 (2006) · Zbl 1130.11037 · doi:10.2478/s11533-006-0011-z
[14] Weyl, Hermann, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann.,, 77, 3, 313-352 (1916) · JFM 46.0278.06 · doi:10.1007/BF01475864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.