×

Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems. (English) Zbl 1480.35075

Summary: In this note, we study the mean curvature flow and the prescribed mean curvature type equation with general capillary-type boundary condition, which is \(u_{\nu} = -\phi (x)(1+|Du|^2)^{\frac{1-q}{2}}\) for any parameter \(q>0\). Using the maximum principle, we prove the gradient estimates for the solutions of such a class of boundary value problems. As a consequence, we obtain the corresponding existence theorem for a class of mean curvature equations. In addition, we study the related additive eigenvalue problem for general boundary value problems and describe the asymptotic behavior of the solution at infinity time. The originality of the paper lies in the range \(0<q<1\), since there are no any related results before. For parabolic case, we generalize the result of X.-N. Ma, P.-H. Wang and the second author [J. Funct. Anal. 274, No. 1, 252–277 (2018; Zbl 1376.53087)] to any \(q>0\). And in elliptic case, we generalize the results in [the third author, Commun. Pure Appl. Anal. 15, No. 5, 1719–1742 (2016; Zbl 1348.35043)] to any \(q\geq 0\) and to any bounded smooth domain.

MSC:

35B45 A priori estimates in context of PDEs
35B50 Maximum principles in context of PDEs
35J93 Quasilinear elliptic equations with mean curvature operator
35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations
35K93 Quasilinear parabolic equations with mean curvature operator
Full Text: DOI

References:

[1] S. J. Altschuler; L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var., 2, 101-111 (1994) · Zbl 0812.35063 · doi:10.1007/BF01234317
[2] B. Andrews; J. Clutterbuck, Time-interior gradient estimates for quasilinear parabolic equations, Indiana Univ. Math. J., 58, 351-380 (2009) · Zbl 1173.35030 · doi:10.1512/iumj.2009.58.3756
[3] G. Barles; H. Ishii; H. Mitake, On the large time behavior of solutions of Hamilton-Jacobi equations associated with nonlinear boundary conditions, Arch. Rational Mech. Anal., 204, 515-558 (2012) · Zbl 1282.70037 · doi:10.1007/s00205-011-0484-1
[4] G. Barles; H. Mitake, A PDE approach to large-time asymptotics for boundary value problems for nonconvex Hamilton-Jacobi equations, Comm. in Partial Differential Equations, 37, 136-168 (2012) · Zbl 1243.35021 · doi:10.1080/03605302.2011.553645
[5] K. A. Brakke, The Motion of A Surface by Its Mean Curvature, Ph.D. Thesis, Princeton University, 1975.
[6] P. Concus; R. Finn, On capillary free surfaces in the absence of gravity, Acta Math., 132, 177-198 (1974) · Zbl 0382.76003 · doi:10.1007/BF02392113
[7] C. M. Ellott; Y. Giga; S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations, SIAM J. Math. Anal., 34, 861-881 (2003) · Zbl 1030.35115 · doi:10.1137/S003614100139957X
[8] R.Finn, Equilibrium Capillary Surfaces, Fundamental Principle of mathematics, 284, Springer-Verlag, New York, 1986. · Zbl 0583.35002
[9] C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Sci. Norm. Sup. Piss Ser. (4), 3 (1976), 157-175. · Zbl 0338.49008
[10] E. Giusti, On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions, Invent. Math., 46, 111-137 (1978) · Zbl 0381.35035 · doi:10.1007/BF01393250
[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, \(2^{nd}\) edition, Springer-Verlag Berlin, 2001. · Zbl 1042.35002
[12] B. Guan, Mean curvature motion of non-parametric hypersurfaces with contact angle condition, in Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), AK Peters, Wellesley, MA, (1996), 47-56. · Zbl 0870.35048
[13] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20, 237-266 (1984) · Zbl 0556.53001
[14] G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84, 463-480 (1986) · Zbl 0589.53058 · doi:10.1007/BF01388742
[15] G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differ. Equations., 77, 369-378 (1989) · Zbl 0686.34013 · doi:10.1016/0022-0396(89)90149-6
[16] L. Hormander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal., 62, 1-52 (1976) · Zbl 0331.35020 · doi:10.1007/BF00251855
[17] H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions: approximations, numerical analysis and applications, in Lecture Notes in Math., 2074, Springer, Heidelberg, 111-249, 2013. · Zbl 1269.49044
[18] N. J. Korevaar, Maximum principle gradient estimates for the capillary problem, Comm. in Partial Differential Equations, 13, 1-31 (1988) · Zbl 0659.35042 · doi:10.1080/03605308808820536
[19] G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. in Partial Differential Equations, 13, 33-59 (1988) · Zbl 0659.35043 · doi:10.1080/03605308808820537
[20] G. M. Lieberman, Oblique Boundary Value Problems for Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. · Zbl 1273.35006
[21] G. M. Lieberman; N. S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Transactions of the American Mathematical Society, 295, 509-546 (1986) · Zbl 0619.35047 · doi:10.2307/2000050
[22] P. L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Mathematical Journal, 52, 793-820 (1985) · Zbl 0599.35025 · doi:10.1215/S0012-7094-85-05242-1
[23] H. Mitake, The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton- Jacobi equations, NoDEA Nonlinear Differential Equations App., 15, 347-362 (2008) · Zbl 1171.35332 · doi:10.1007/s00030-008-7043-y
[24] H. Mitake, Asymptotic solutions of Hamilton-Jacobi equations with state constraints, Appl. Math. Optim., 58, 393-410 (2008) · Zbl 1178.35137 · doi:10.1007/s00245-008-9041-1
[25] X. N. Ma; P. H. Wang; W. Wei, Mean curvature equation and mean curvature type flow with non-zero Neumann boundary conditions on strictly convex domains, J. Func. Anal., 274, 252-277 (2018) · Zbl 1376.53087 · doi:10.1016/j.jfa.2017.10.002
[26] X. N. Ma; J. J. Xu, Gradient estimates of mean curvature equations with Neumann boundary condition, Advances in Mathematics, 290, 1010-1039 (2016) · Zbl 1335.35084 · doi:10.1016/j.aim.2015.10.031
[27] O. C. Schnürer; R. S. Hartmut, Translating solutions for Gauss curvature flows with Neumann boundary conditions, Pacific J. Math., 213, 89-109 (2004) · Zbl 1156.35402 · doi:10.2140/pjm.2004.213.89
[28] L. Simon; J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61, 19-34 (1976) · Zbl 0361.35014 · doi:10.1007/BF00251860
[29] J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28, 189-200 (1975) · Zbl 0297.76018 · doi:10.1002/cpa.3160280202
[30] N. N. Ural’tseva, The solvability of the capillary problem, (Russian) Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom.Vyp., 4 (1973), 54-64.
[31] X. J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228, 73-81 (1998) · Zbl 0909.35022 · doi:10.1007/PL00004604
[32] J. J. Xu, A new proof of gradient estimates for mean curvature equations with oblique boundary conditions, Commun. Pure Appl. Anal., 15, 1719-1742 (2016) · Zbl 1348.35043 · doi:10.3934/cpaa.2016010
[33] J. J. Xu, Mean curvature flow of graphs with Neumann boundary conditions, Manuscripta Mathematica, 158, 75-84 (2019) · Zbl 1406.35075 · doi:10.1007/s00229-018-1007-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.