×

Oscillator realisations associated to the \(D\)-type Yangian: towards the operatorial Q-system of orthogonal spin chains. (English) Zbl 1479.82015

Summary: We present a family of novel Lax operators corresponding to representations of the RTT-realisation of the Yangian associated with \(D\)-type Lie algebras. These Lax operators are of oscillator type, i.e. one space of the operators is infinite-dimensional while the other is in the first fundamental representation of \(\mathfrak{so}(2r)\). We use the isomorphism between the first fundamental representation of \(D_3\) and the 6 of \(A_3\), for which the degenerate oscillator type Lax matrices are known, to derive the Lax operators for \(r = 3\). The results are used to generalise the Lax matrices to arbitrary rank for representations corresponding to the extremal nodes of the simply laced Dynkin diagram of \(D_r\). The multiplicity of independent solutions at each extremal node is given by the dimension of the fundamental representation. We further derive certain factorisation formulas among these solutions and build transfer matrices with oscillators in the auxiliary space from the introduced degenerate Lax matrices. Finally, we provide some evidence that the constructed transfer matrices are Baxter Q-operators for \(\mathfrak{so}(2r)\) spin chains by verifying certain QQ-relations for \(D_4\) at low lengths.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
17B38 Yang-Baxter equations and Rota-Baxter operators

References:

[1] Zamolodchikov, A. B.; Zamolodchikov, A. B., Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models, Ann. Phys., 120, 253-291 (1979)
[2] Shankar, R.; Witten, E., The S-matrix of the kinks of the \(( \overline{\psi} \psi )^2\) model, Nucl. Phys. B, 141, 349 (1978)
[3] Reshetikhin, N. Yu., Integrable models of quantum one-dimensional magnets with \(O(n)\) and \(S p(2 k)\) symmetry, Theor. Math. Phys., 63, 555-569 (1985)
[4] Reshetikhin, N. Yu., Hamiltonian structures for integrable field theory models. II. Models with \(O(n)\) and \(S p(2 k)\) symmetry on a one-dimensional lattice, Theor. Math. Phys., 63, 455-462 (1985)
[5] de Vega, H. J.; Karowski, M., Exact Bethe ansatz solution of \(O(2 n)\) symmetric theories, Nucl. Phys. B, 280, 225-254 (1987)
[6] Kirillov, A. N.; Reshetikhin, N. Y., Representations of Yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras, J. Sov. Math., 52, 3, 3156-3164 (1990) · Zbl 0900.16047
[7] MacKay, N. J., New factorized S-matrices associated with SO(N), Nucl. Phys. B, 356, 729-749 (1991)
[8] Arnaudon, D.; Molev, A.; Ragoucy, E., On the R-matrix realization of Yangians and their representations, Ann. Henri Poincaré, 7, 7, 1269-1325 (Dec 2006) · Zbl 1227.17008
[9] Chicherin, D.; Derkachov, S.; Isaev, A. P., The spinorial R-matrix, J. Phys. A, 46, Article 485201 pp. (2013) · Zbl 1280.81143
[10] Chicherin, D.; Derkachov, S.; Isaev, A. P., Conformal group: R-matrix and star-triangle relation, J. High Energy Phys., 04, Article 020 pp. (2013) · Zbl 1342.81204
[11] Karakhanyan, D.; Kirschner, R., Orthogonal and symplectic Yangians - linear and quadratic evaluations, Nucl. Phys. B, 933, 14-39 (2018) · Zbl 1395.81278
[12] Karakhanyan, D. R.; Kirschner, R., Second-order evaluations of orthogonal and symplectic Yangians, Theor. Math. Phys., 192, 2, 1154-1161 (2017) · Zbl 1382.16033
[13] Isaev, A. P.; Karakhanyan, D.; Kirschner, R., Metaplectic R-matrices, Phys. Part. Nucl. Lett., 14, 2, 360-364 (2017)
[14] Karakhanyan, D.; Kirschner, R., Yang-Baxter relations with orthogonal or symplectic symmetry, J. Phys. Conf. Ser., 670, 1, Article 012029 pp. (2016)
[15] Isaev, A. P.; Karakhanyan, D.; Kirschner, R., Orthogonal and symplectic Yangians and Yang-Baxter R-operators, Nucl. Phys. B, 904, 124-147 (2016) · Zbl 1332.81096
[16] Karakhanyan, D.; Kirschner, R., Spinorial R operator and algebraic Bethe ansatz · Zbl 1395.81278
[17] Bazhanov, V. V.; Lukowski, T.; Meneghelli, C.; Staudacher, M., A shortcut to the Q-operator, J. Stat. Mech., 1011, Article P11002 pp. (2010)
[18] Bazhanov, V. V.; Frassek, R.; Lukowski, T.; Meneghelli, C.; Staudacher, M., Baxter Q-operators and representations of Yangians, Nucl. Phys. B, 850, 148-174 (2011) · Zbl 1215.81052
[19] Frassek, R.; Lukowski, T.; Meneghelli, C.; Staudacher, M., Baxter operators and Hamiltonians for ‘nearly all’ integrable closed \(\mathfrak{gl}(n)\) spin chains, Nucl. Phys. B, 874, 620-646 (2013) · Zbl 1282.82015
[20] Bazhanov, V. V.; Lukyanov, S. L.; Zamolodchikov, A. B., Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Commun. Math. Phys., 200, 297-324 (1999) · Zbl 1057.81531
[21] Braverman, A.; Finkelberg, M.; Nakajima, H., Coulomb branches of 3d \(\mathcal{N} = 4\) quiver gauge theories and slices in the affine Grassmannian, Adv. Theor. Math. Phys., 23, 75-166 (2019) · Zbl 1479.81044
[22] Das, A.; Okubo, S., Lie Groups and Lie Algebras for Physicists (2014), World Scientific · Zbl 1322.22002
[23] Sklyanin, E., Bäcklund Transformations and Baxter’s Q-Operator, CRM Proceedings, Lecture Notes, vol. 26, 227-250 (2000), American Mathematical Society · Zbl 0969.37030
[24] Masoero, D.; Raimondo, A.; Valeri, D., Bethe ansatz and the spectral theory of affine Lie algebra-valued connections I. The simply-laced case, Commun. Math. Phys., 344, 3, 719-750 (2016) · Zbl 1347.82011
[25] Dorey, P.; Dunning, C.; Tateo, R., The ODE/IM correspondence, J. Phys. A, 40, R205 (2007) · Zbl 1120.81044
[26] Bazhanov, V. V.; Tsuboi, Z., Baxter’s Q-operators for supersymmetric spin chains, Nucl. Phys. B, 805, 451-516 (2008) · Zbl 1190.82007
[27] Frenkel, E.; Hernandez, D., Baxter’s relations and spectra of quantum integrable models, Duke Math. J., 164, 12, 2407-2460 (2015) · Zbl 1332.82022
[28] Frassek, R., Algebraic Bethe ansatz for Q-operators: the Heisenberg spin chain, J. Phys. A, 48, 29, Article 294002 pp. (2015) · Zbl 1330.82018
[29] Hernandez, D.; Jimbo, M., Asymptotic representations and Drinfeld rational fractions, Compos. Math., 148, 1593-1623 (2012) · Zbl 1266.17010
[30] Boos, H.; Göhmann, F.; Klümper, A.; Nirov, K. S.; Razumov, A. V., Oscillator versus prefundamental representations, J. Math. Phys., 57, 11, Article 111702 pp. (2016) · Zbl 1388.17007
[31] Boos, H.; Göhmann, F.; Klümper, A.; Nirov, K. S.; Razumov, A. V., Oscillator versus prefundamental representations. II. Arbitrary higher ranks, J. Math. Phys., 58, 9, Article 093504 pp. (2017) · Zbl 1388.17008
[32] Tsuboi, Z., A note on q-oscillator realizations of \(U_q(g l(M | N))\) for Baxter Q-operators, Nucl. Phys. B, 947, Article 114747 pp. (2019) · Zbl 1435.81102
[33] Kazakov, V.; Leurent, S.; Tsuboi, Z., Baxter’s Q-operators and operatorial backlund flow for quantum (super)-spin chains, Commun. Math. Phys., 311, 787-814 (2012) · Zbl 1247.82023
[34] Frassek, R.; Pestun, V.; Tsymbaliuk, A., Lax matrices from antidominantly shifted Yangians and quantum affine algebras
[35] Nekrasov, N.; Pestun, V., Seiberg-Witten geometry of four dimensional \(N = 2\) quiver gauge theories
[36] Nekrasov, N.; Pestun, V.; Shatashvili, S., Quantum geometry and quiver gauge theories, Commun. Math. Phys., 357, 2, 519-567 (2018) · Zbl 1393.81033
[37] Frassek, R.; Pestun, V., A family of \(\operatorname{GL}_r\) multiplicative Higgs bundles on rational base, SIGMA, 15, Article 031 pp. (2019) · Zbl 1464.16029
[38] Frassek, R.; Szecsenyi, I. M., Q-operators for the open Heisenberg spin chain, Nucl. Phys. B, 901, 229-248 (2015) · Zbl 1332.82014
[39] Baseilhac, P.; Tsuboi, Z., Asymptotic representations of augmented q-Onsager algebra and boundary K-operators related to Baxter Q-operators, Nucl. Phys. B, 929, 397-437 (2018) · Zbl 1382.81112
[40] Tsuboi, Z., On diagonal solutions of the reflection equation, J. Phys. A, 52, 15, Article 155201 pp. (2019) · Zbl 1509.81529
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.